aerospace climate control electromechanical filtration fluid & gas handling hydraulics pneumatics process control sealing & shielding # **PNEUDRI** Compressed Air Desiccant Dryers # Moisture is a big problem for compressed air users Moisture is one of the major contaminants in compressed air systems. It occurs because water vapor present in the atmosphere is drawn into the compressor, where its' concentration can rise dramatically as temperature increases. Of the ten contaminants commonly found in a compressed air system, water vapor, liquid water and aerosols account for the majority of problems experienced by the compressed air user. ### Unseen water vapor condenses into liquid water Large volumes of atmospheric air enter the compressed air system through the compressor intake. As the air is compressed, its temperature increases significantly, causing it to become fully saturated with water vapor. Water vapor retention in air is dependent upon its temperature and pressure; the higher the temperature, the more water vapor that can be retained; the higher the pressure, the greater the amount of condensed water that will be released. After the compression stage, the now saturated air is cooled to a usable temperature by an aftercooler, causing the retained water vapor to be condensed into liquid water which is then removed by a condensate drain. The air leaving the aftercooler is now 100% saturated with water vapor. As the compressed air moves downstream to storage vessels and through piping, its temperature falls and concentrated vapor will sublimate as droplets of liquid water. If not removed, this will cause corrosion of the distribution system, blocked or frozen valves and machinery, as well as providing an ideal breading ground for micro-organisms and bacteria. To eliminate these moisture problems, all viable water vapor must be removed by desiccant dryers, before it can enter the compressed air system. ## How much water can be found in a typical compressed air system? The amount of water in a compressed air system is staggering. A small 100 cfm (2.8 m³/min) compressor and refrigerated air dryer combination, operating for 4000 hours in typical Northern American climatic conditions can produce approximately 2,200 gallons or 10,000 liters of liquid condensate per year. Oil is often perceived to be the most prolific contaminant as it is can be seen emanating from open drain points and exhausting valves. In the majority of instances, it is actually oily condensate (oil mixed with water) that is being observed. In reality, oil accounts for less than 0.1% of the overall volume. This example illustrates the use of a small compressor to highlight the large volume of condensate produced. Up to 99.9% of the total liquid contamination found in a compressed air system is water. If a compressed air system was operated in warmer, more humid climates, with larger compressors, or run for longer periods, the volume of condensate would increase significantly. 99.9% of the total liquid contamination in a compressed air system is water. # PNEUDRI modular compressed air dryers - a dedicated solution for every application By combining the proven benefits of desiccant drying with modern design, Parker domnick hunter has produced an extremely compact and reliable system to totally dry and clean compressed air. PNEUDRI MiDAS Flowrates from 3 cfm> (5.1m³/hr >) PNEUDRI MIDIplus Flowrates from 24 cfm> (49m³/hr >) PNEUDRI DH MAXI Flowrates from 140 cfm> (238m³/hr >) PNEUDRI MPX Flowrates from 1381 cfm> (2346m³/hr >) PNEUDRI MX Flowrates from 240 cfm> (408m³/hr >) The Parker domnick hunter PNEUDRI ranges of heatless and heat regenerative dryers have proven to be the ideal solution for many thousands of compressed air users worldwide in a wide variety of industries. Compressed air purification equipment must deliver uncompromising performance and reliability while providing the right balance of air quality with the lowest cost of operation. ### **Benefits:** ### Highest quality air Clean, oil-free and dry compressed air in accordance with all editions of ISO8573-1, the international standard for compressed air quality ### **Energy efficient** - Giving maximum savings ### Dry air eliminates microbiological growth - Preventing product spoilage, recall and litigation ### Dry air means zero corrosion - Preventing product spoilage and damage ### Smaller, more compact and lightweight Modular construction means less than half the size of conventional dryers ### Modular design - 100% standby at a fraction of the cost of twin tower designs - 10 year guarantee on pressure envelope - Corrosion resistance due to alochroming and epoxy painting - Constant dewpoint performance thanks to snowstorm filling ### Approvals to international standards - UL, CSA, CRN, PED, CE ### Easy and flexible installation - Minimal space required ### Simple maintenance - Giving reduced downtime ### Reduced noise pollution - Less than 85 dBA Clean, dry air improves production efficiency and reduces maintenance costs and downtime. Only an desiccant dryer can provide the highest levels of dry compressed air. ### **PNEUDRI - How it works** PNEUDRI comprises of high tensile extruded aluminum columns each containing twin chambers filled with desiccant material which dries the compressed air as it passes through. One chamber is operational (drying), while the opposite chamber is regenerating using either the Pressure Swing Desiccant (PSA) (heatless) or Thermal Swing Desiccant (TSA) (heat regenerative) method of drying. A small volume of the dried compressed air is used to regenerate the saturated desiccant bed by expanding air from line pressure to atmospheric pressure, removing the water vapor adsorbed by the desiccant material, and therefore regenerating the dryer. Heat regenerative models have electric heaters built into the desiccant beds to further reduce purge air consumption and increase operating efficiency. Modular design eliminates the need for complex valves and interconnecting piping which are used in conventional twin tower designs. # PNEUDRI - The world's most advanced modular drying system With the proven benefit of advanced aluminum forming technology, Parker domnick hunter has developed a twin tower desiccant dryer that is typically 60% of the size and weight of conventional designs. These advanced desiccant dryers include ranges of heatless and heat-regenerative PNEUDRI dryers which provide one of the most simple and cost effective compressed air drying solutions. Engineers at Parker domnick hunter have developed PNEUDRI using innovative aluminum forming technology, resulting in units that are typically 60% of the size and weight of conventional welded steel desiccant air dryers. Using a single, high tensile extruded aluminum column, the PNEUDRI modular design eliminates the need for complex valves or interconnecting piping. Also, the length to diameter ratio of the internal voids and non-welded construction means that PNEUDRI does not require periodic inspections for insurance purposes, unlike traditional twin-tower air dryers that require out of service periods which can severely disrupt production schedules. **Drying Columns** Distribution Manifold ### Greater flexibility with multi-banking ### **Multi-banking** Unlike traditional twin tower dryer designs, PNEUDRI MAXI models can be multi-banked to provide extra compressed air drying capacity should demand increase in the future. There is no need to replace the dryer with a larger unit, additional capacity can be covered by simply adding extra bank(s), a feature only available with PNEUDRI. ### Flexibility during maintenance Multi-banking allows individual dryer banks to be easily isolated for routine service work, while maintaining your clean, dry air supply. ### 100% stand-by Compared to traditional twin tower designs, 100% standby is available at a fraction of the cost as only one extra dryer bank is required. ### Fits through a standard doorway Unlike traditional twin tower designs, PNEUDRI dryers will fit through a standard doorway, eliminating the need for special access or facility structural dismantling during installation. # PNEUDRI - four key features guarantee air quality ### **OIL-X EVOLUTION filtration** Desiccant dryers are designed for the removal of water vapor and not liquid water, water aerosols, oil, particulates or micro-organisms. Only by using Parker domnick hunter OIL-X EVOLUTION pre and after filtration can the removal of these contaminants be assured and air quality in accordance with all editions of ISO8573-1 be guaranteed. ### Modular aluminum design Aluminum extrusions are used throughout for drying chambers and distribution manifolds. This design allows the desiccant material to be retained within the drying chambers. 'Snowstorm' filling, prevents movement of the desiccant material during operation and also eliminates desiccant attrition and breakdown which could lead to a loss of pressure dewpoint. ### Adsorbent desiccant material Specially selected desiccant materials provide: - . Optimum desiccant and regeneration capacity to ensure consistent dewpoint - · Low dusting to prevent blockage of downstream filtration - · High crush strength to prevent breakdown of the desiccant during operation - High resistance to aggressive and oil-free condensate for compatibility with all types of air compressor, their lubricants and condensate 'Snowstorm' filling ensures consistent dewpoint performance Consistent drying with no desiccant attrition Inconsistent drying and desiccant attrition ### 'Snowstorm' filling method Unique to Parker domnick hunter modular dryers is the snowstorm filling technique used to charge the drying chambers with adsorbent desiccant material. The benefits are: - Achieves maximum packing density for the desiccant material, fully utilizing all of the available space envelope - Prevents air channelling through the desiccant as experienced with twin tower designs.
Due to channelling, twin tower designs require more desiccant to achieve an identical dewpoint, increasing physical size, operational and maintenance costs - Prevents desiccant attrition which can lead to dusting, blocked filters and loss of dewpoint - Allows 100% of the available desiccant material to be used for drying, therefore reducing the amount of desiccant required and maintenance costs - 100% of the desiccant is regenerated ensuring consistent dewpoint - Provides a low, equal resistance to air flow allowing multiple drying chambers and multiple dryer banks to be used, a feature only available with PNEUDRI ### What air quality do I need? The compressed air PDP should not only be selected to prevent condensation and freezing in the piping, consideration must also be given to the requirements of the application. Typically, refrigerated air dryers are employed for general purpose plant air. However, a significant amount of water vapor still remains in the compressed air, much more than is tolerable for most applications (air after a desiccant dryer with -40°F (-40°C) Pressure Dewpoint (PDP) is around 60 times dryer than air after a refrigerated air dryer with a +37.4°F (+3°C) PDP). Many critical applications require a PDP well below those offered by refrigerated dryers, for example, compressed air with a PDP better than $-14.8\,^{\circ}$ F ($-26\,^{\circ}$ C) will inhibit growth of micro-organisms, which is well beyond the capabilities of a refrigerated dryer. Preventing the growth of these microbiological contaminants is crucial to industries such as food, beverage, pharmaceutical, medical, dental, electronics, cosmetics and any application where compressed air is used to provide breathable air. # The quality of air required throughout a typical compressed air system will vary depending upon the application for which it is used. ### **Critical Applications** Pharmaceutical products Silicon wafer manufacturing TFT / LCD screen manufacturing Memory device manufacturing Optical storage devices (CD, CD/RW, DVD, DVD/RW) Optical disk manufacturing (CDs/DVDs) Hard disk manufacturing Foodstuffs **Dairies** **Breweries** CDA systems for electronics manufacturing For ultra-critical applications which require the driest possible air, -100°F (-70°C) PDP must be specified. ### **High Quality Oil-Free Air** Blow molding of plastics e.g. P.E.T. bottles Film processing **Critical instrumentation** **Advanced pneumatics** Air blast circuit breakers **Decompression chambers** Cosmetic production Medical air **Dental** air Robotics Spray painting Air bearings Measuring equipment Pre-treatment for on-site gas generation ### **General Purpose Oil-Free Air** General ring main protection Plant automation Air logistics **Pneumatic tools** **General instrumentation** Metal stamping **Forging** **General manufacturing** (no external piping) Air conveying Air motors Workshop (tools) Temperature control systems **Blow guns** **Gauging equipment** Raw material mixing Sand / bead blasting Yard air # Selecting the right dryer for your compressed air system To achieve the degree of air quality specified by ISO8573-1:2010, a careful approach to system design, commissioning and operation must be adopted. Parker domnick hunter recommends that compressed air is treated: - Prior to entry into the distribution system - At critical usage points and applications This ensures that contamination already in the distribution system is removed. Purification equipment should be installed where the air is at the lowest possible temperature (i.e. downstream of after-coolers and air receivers). Point-of-use purification equipment should be installed as close as possible to the application. ### Key | 1 | Air Compressor | |---|--------------------| | 2 | Wet Air Receiver | | 3 | Condensate Drain | | 4 | Water Separator | | 5 | Coalescing Filters | | 6 | Modular Desiccant Dryer | |----|-------------------------| | 7 | Dust Filter | | 8 | Condensate Drainage | | 9 | Oil / Water Separator | | 10 | Dry Air Receiver | | 11 | Oil Vapor Removal | |----|--------------------------------| | 12 | Sterile Air Filter | | 13 | On-site Nitrogen Gas Generator | | 14 | Point of use Desiccant Dryer | | 15 | Breathing Air Purifier | ## What size PNEUDRI do I require? ### **Dryer Selection** To correctly select a dryer model, the flow rate of the dryer must be adjusted for the minimum operating pressure and maximum operational temperature of the system. If the dewpoint required is different to the standard dewpoint of the dryer then the flow rate must also be adjusted for the required outlet dewpoint. ### **Selection Example** Selecting a dryer for a compressor producing at full load 883 cfm (1500 m³/hr) at 120 psi g (8.3 bar g) with 100°F (38°C) air inlet temperature and a pressure dewpoint of -40°F (-40°C). ### Step 1 Select the correction factor for maximum inlet temperature from the CFT table Correction Factor for 100°F (38°C) (round up to 104°F (40°C) = 1.04 | Temperature Correction Factor CFT | | | | | | | |-----------------------------------|-----|------|--|--|--|--| | | °F | 104 | | | | | | Maximum Inlet
Temperature | °C | 40 | | | | | | | CFT | 1.04 | | | | | Select the correction factor for minimum operating pressure from the CFP table Correction Factor for 116 psi g (8 bar g) (round down to 8 bar g) = 0.89 | Pressure Correction Factor CFP | | | | | | |--------------------------------|-------|------|--|--|--| | | psi g | 116 | | | | | Minimum
Inlet Pressure | bar g | 8 | | | | | inict i ressure | CFP | 0.89 | | | | PDP °F PDP °C **CFD** **Dewpoint Correction Factor CFD** Required Dewpoint ### Step 3 Select the correction factor for the required dewpoint from the CFD table Correction Factor for $-40^{\circ}F$ ($-40^{\circ}C$ PDP) = 1.00 ### Step 4 ### Calculate the minimum drying capacity Minimum drying capacity = Compressed air flow rate x CFT x CFP x CFD Minimum drying capacity = 883 cfm $(1500 \text{ m}^3/\text{hr}) \times 1.04 \times 0.89 \times 1.00 =$ 817 cfm (1388 m³/hr) Model selected = MX106 ### Step 5 ### Which controller is required? SMART controller is required therefore model selected = MXS106 ### Is DDS Energy Management System required? DDS Energy Management system is required therefore model selected = MXS106DS If the minimum drying capacity exceeds the maximum values of the models shown within the tables, please contact Parker domnick hunter for advice regarding larger multi-banked dryers. -40 -40 1.00 ## **PNEUDRI MIDAS** ### **Product Selection** | Model | - | Inlet Flowrates | | | | | | | |-------|-----------|-----------------|-----|--------|-------|--|--|--| | Model | Pipe Size | cfm | L/S | m³/min | m³/hr | | | | | DAS1 | 3/8 " | 3 | 1 | 0.09 | 5.1 | | | | | DAS2 | 3/8 " | 5 | 2 | 0.14 | 8.5 | | | | | DAS3 | 3/8 " | 8 | 4 | 0.23 | 13.6 | | | | | DAS4 | 3/8 " | 10 | 5 | 0.28 | 17.0 | | | | | DAS5 | 3/8 " | 13 | 6 | 0.37 | 22.1 | | | | | DAS6 | 3/8 " | 15 | 7 | 0.43 | 25.5 | | | | | DAS7 | 3/8 " | 20 | 9 | 0.57 | 34.0 | | | | Stated flows are for operation at 100 psi g (7 bar g) with reference to $68^{\circ}F$ ($20^{\circ}C$), 1 bar a, 0% relative water vapor pressure. For flows at other pressures, apply the correction factors shown. ### **Dryer Performance** | Daver Medele | *Dewpoir | nt (Standard) | ISO8573-1-2010 | | ISO8573-1:2010
Classification | | |--------------|----------|---------------|---------------------------|------|----------------------------------|------------| | Dryer Models | °F | °C | Classification (standard) | °F | °C | (Option 1) | | DAS | -40 | -40 | Class 2 | -100 | -70 | Class 1 | ### **Technical Data** | Dryer | Min Operating
Pressure | | Max Operating
Pressure | | Min Inlet
Temperature | | Max Inlet
Temperature | | Max Ambient
Temperature | | |--------|---------------------------|-------|---------------------------|-------|--------------------------|----|--------------------------|----|----------------------------|----| | Models | psi g | bar g | psi g | bar g | °F | °C | °F | °C | °F | °C | | DAS | 58 | 4 | 175 | 12 | 35 | 2 | 122 | 50 | 131 | 55 | | Dryer | Electrical Supply (Standard) | Electrical Supply (Optional) | Thread | Noise Level (average) | Electronic
Controller | Function | | |--------|------------------------------|------------------------------|-------------|-----------------------|--------------------------|------------------------|--------------------------------| | Models | Tolerance ± 10% | Tolerance ± 10% | Connection | dB(A) | Options | Power On
Indication | Service Interval
Indication | | DAS | 115 V/ 1ph / 60Hz | 230 V/ 1ph / 50Hz | NPT or BSPP | <75 | DAS | • | • | For fully pneumatic applications, a PNEUDRI MINI range is available. Please contact Parker domnick hunter for further information. | Temperature Correction Factor CFT | | | | | | | | | | | |-----------------------------------|-----|------|------|------|------|------|------|--|--|--| | Maximum Inlet
Temperature | °F | 77 | 86 | 95 | 104 | 113 | 122 | | | | | | °C | 25 | 30 | 35 | 40 | 45 | 50 | | | | | | CFT | 1.00 | 1.00 | 1.00 | 1.04 | 1.14 | 1.37 | | | | | Pressure Correction Factor CFP | | | | | | | | | | | |--------------------------------|-------|------|------|------|------|------|------|------|------|------| | Minimum Inlet
Pressure | psi g | 58 | 73 | 87 | 102 | 116 | 131 | 145 | 160 | 174 | | | bar g | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | | CFP | 1.60 | 1.33 | 1.14 | 1.00 | 1.03 | 0.93 | 0.85 | 0.78 | 0.71 | | Dewpoint Corre | ction Factor CFD | Standard | Option 1 | |-----------------------|------------------|----------|----------| | | PDP °F | -40 | -100 | | Required Dewpoint | PDP °C | -40 | -70 | | | CFD | 1.00 | 1.43 | ### **Weights and Dimensions** | | | | | Dimer | nsions | | | Weight | | |-------|--------------|-------|--------|-------|--------|------|-------|--------|----| | Model | Pipe
Size | Heigh | nt (H) | Widt | h (W) | Dept | h (D) | | | | | |
ins | ins mm | | mm | ins | mm | lbs | Kg | | DAS1 | 3/8 " | 16.6 | 422 | 11.4 | 289 | 5.9 | 149 | 24.2 | 11 | | DAS2 | 3/8 " | 19.7 | 500 | 11.4 | 289 | 5.9 | 149 | 28.7 | 13 | | DAS3 | 3/8 " | 24.2 | 616 | 11.4 | 289 | 5.9 | 149 | 35.3 | 16 | | DAS4 | 3/8 " | 27.2 | 692 | 11.4 | 289 | 5.9 | 149 | 39.7 | 18 | | DAS5 | 3/8 " | 33.3 | 847 | 11.4 | 289 | 5.9 | 149 | 44.1 | 20 | | DAS6 | 3/8 " | 35.7 | 906 | 11.4 | 289 | 5.9 | 149 | 50.7 | 23 | | DAS7 | 3/8 " | 43.2 | 1098 | 11.4 | 289 | 5.9 | 149 | 61.7 | 28 | ### **Recommended Filtration** | Model | Filter Pipe Size
NPT | Inlet General
Purpose Pre-filter | Inlet High
Efficiency Filter | Outlet
Dust Filter | |-------|-------------------------|-------------------------------------|---------------------------------|-----------------------| | DAS1 | 3/8" | AO0010BNFX | Included | Included | | DAS2 | 3/8" | AO0010BNFX | Included | Included | | DAS3 | 3/8" | AO0010BNFX | Included | Included | | DAS4 | 3/8" | AO0010BNFX | Included | Included | | DAS5 | 3/8" | AO0010BNFX | Included | Included | | DAS6 | 3/8" | AO0010BNFX | Included | Included | | DAS7 | 3/8" | AO0010BNFX | Included | Included | # **PNEUDRI MIDIplus** ### **Product Selection** | Madal | Dina Sina | | Inlet Flo | wrates | | |--------|-----------|-----|-----------|--------|-------| | Model | Pipe Size | cfm | L/S | m³/min | m³/hr | | DME012 | 3/4 " | 24 | 11 | 0.68 | 41 | | DME015 | 3/4 " | 32 | 15 | 0.91 | 55 | | DME020 | 3/4 " | 42 | 20 | 1.19 | 71 | | DME025 | 3/4 " | 53 | 25 | 1.50 | 90 | | DME030 | 3/4 " | 65 | 31 | 1.84 | 110 | | DME040 | 3/4 " | 88 | 42 | 2.49 | 149 | | DME050 | 1" | 106 | 50 | 3.01 | 180 | | DME060 | 1" | 130 | 61 | 3.69 | 221 | | DME080 | 1" | 176 | 83 | 4.99 | 299 | Stated flows are for operation at 100 psi g (7 bar g) with reference to 68°F (20°C), 1 bar a, 0% relative water vapor pressure. For flows at other pressures, apply the correction factors shown. ### **Dryer Performance** | Duran Madala | Dewpoir | nt (Standard) | ISO8573-1:2010 | Dewpoin | t (Option 1) | ISO8573-1:2010 | |--------------|---------|---------------|---------------------------|---------|--------------|---------------------------| | Dryer Models | °F | °C | Classification (standard) | °F | °C | Classification (Option 1) | | DME | -40 | -40 | Class 2 | -100 | -70 | Class 1 | | DMP* | -40 | -40 | Class 2 | -100 | -70 | Class 1 | ### **Technical Data** | Dryer Models | Min Operating Max Operat Pressure Press | | perating
Pressure | | | | | Max Ambient
Temperature | | Electrical
Supply | Electrical
Supply | Thread | Noise
Level | | |------------------|---|-------|----------------------|-------|----|----|-----|----------------------------|-----|----------------------|----------------------|---------------------|----------------|-------| | Dryer Wiodels | psi g | bar g | psi g | bar g | °F | °C | °F | °C | °F | °C | (Standard) | (Optional) | Connection | dB(A) | | DME012 - DME040 | 58 | 4 | 232 | 16 | 35 | 2 | 122 | 50 | 131 | 55 | 110V/1ph
50/60Hz | 230V/1ph
50/60Hz | NPT or BSPP | <75 | | DME050 - DME080 | 58 | 4 | 190 | 13 | 35 | 2 | 122 | 50 | 131 | 55 | 110V/1ph
50/60Hz | 230V/1ph
50/60Hz | NPT or BSPP | <75 | | DMP12P - DMP80P* | 58 | 4 | 152 | 10.5 | 35 | 2 | 122 | 50 | 131 | 55 | FULLY | / PNEUMATIC | NPT or BSPP | <75 | ### **Controller Options** | | | Function | | | | | | | | | | | | |-----------------------------|---------------------|---------------------|--------------------------------------|-----------------------------------|--------------------------------|-----------------------------------|---------------------------------------|----------------------------|------------------------------------|--|--|--|--| | Controller Options | Power On Indication | Fault
Indication | Display Fault
Condition
Values | Service
Interval
Indication | Service
Countdown
Timers | Configurable
Alarm
Settings | Remote Volt
Free Alarm
contacts | Filter
Service
Timer | DDS Energy
Management
System | | | | | | DME
(Electronic control) | • | • | | | | | • | | | | | | | | DME DDS | • | • | | | | | • | | • | | | | | *ATEX compliant option available. For hazardous environments, a fully pneumatic ATEX compliant version of PNEUDRI is available. ATEX Directive 94/9/EC Group II, Category 2GD, T6. | Temperature Co | Temperature Correction Factor CFT | | | | | | | | | | | | |------------------------------|-----------------------------------|------|------|------|------|------|------|--|--|--|--|--| | | °F | 77 | 86 | 95 | 104 | 113 | 122 | | | | | | | Maximum Inlet
Temperature | °C | 25 | 30 | 35 | 40 | 45 | 50 | | | | | | | | CFT | 1.00 | 1.00 | 1.00 | 1.04 | 1.14 | 1.37 | | | | | | | Pressure Correction Factor CFP | | | | | | | | | | | | | | | |--------------------------------|-------|------|------|------|------|------|------|------|------|------|------|------|-----|------| | | psi g | 58 | 73 | 87 | 100 | 116 | 131 | 145 | 160 | 174 | 189 | 203 | 218 | 232 | | Minimum
Inlet Pressure | bar g | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | | | CFP | 1.60 | 1.33 | 1.14 | 1.00 | 0.89 | 0.80 | 0.73 | 0.67 | 0.62 | 0.57 | 0.54 | 0.5 | 0.47 | Models 012 - 040 only | Dewpoint Corre | ction Factor CFD | Standard | Option 1 | |-----------------------|------------------|----------|----------| | | PDP °F | -40 | -100 | | Required
Dewpoint | PDP °C | -40 | -70 | | | CFD | 1.00 | 1.43 | ### **Weights and Dimensions** | | Pipe | | | Dimer | nsions | | | | | | |--------|-----------------|-------|--------|-------|--------|------|-------|---------|-----|--| | Model | Size
Inlet / | Heigh | nt (H) | Widtl | h (W) | Dept | h (D) | Weight | | | | | Outlet | ins | mm | ins | mm | ins | mm | lbs | kg | | | DME012 | 3/4 " | 33.0 | 837 | 11.2 | 284 | 11.9 | 302 | 70 | 32 | | | DME015 | 3/4 " | 39.5 | 1003 | 11.2 | 284 | 11.9 | 302 | 81 | 37 | | | DME020 | 3/4 " | 46.0 | 1168 | 11.2 | 284 | 11.9 | 302 | 92 | 42 | | | DME025 | 3/4 " | 52.5 | 1333 | 11.2 | 284 | 11.9 | 302 | 103 | 47 | | | DME030 | 3/4 " | 59.0 | 1499 | 11.2 | 284 | 11.9 | 302 | 114 | 52 | | | DME040 | 3/4 " | 68.8 | 1747 | 11.2 | 284 | 11.9 | 302 | 132 | 60 | | | DME050 | 1" | 56.4 | 1433 | 8.7 | 220 | 22.3 | 566 | 176 | 80 | | | DME060 | 1" | 63.0 | 1599 | 8.7 | 220 | 22.3 | 566 | 198 | 90 | | | DME080 | 1" | 72.7 | 1847 | 8.7 | 220 | 22.3 | 566 | 229 | 104 | | ### **Recommended Filtration** | For Dryer
Model | Filter Pipe Size
NPT | Inlet
General Purpose
Pre-filter | Inlet
High Efficiency Filter | Outlet
Dust Filter | |--------------------|-------------------------|--|---------------------------------|-----------------------| | DME012 | 3/4" | AO020DNFI | AA020DNFI | AR020DNMI | | DME015 | 3/4" | AO020DNFI | AA020DNFI | AR020DNMI | | DME020 | 3/4" | AO020DNFI | AA020DNFI | AR020DNMI | | DME025 | 3/4" | AO020DNFI | AA020DNFI | AR020DNMI | | DME030 | 3/4" | AO020DNFI | AA020DNFI | AR020DNMI | | DME040 | 3/4" | AO025DNFI | AA025DNFI | AR025DNMI | | DME050 | 1" | AO025ENFI | AA025ENFI | AR025ENMI | | DME060 | 1" | AO030ENFI | AA030ENFI | AR030ENMI | | DME080 | 1" | AO030ENFI | AA030ENFI | AR030ENMI | ## **PNEUDRI DH** ### **Product Selection** | | Model | Dina Cina | | Inlet Flo | wrates | | |------------|--------------|-----------|------|-----------|--------|--------------------| | | Wodei | Pipe Size | cfm | L/S | m³/min | m ³ /hr | | Bank | DH □ 102 | 2" | 140 | 66 | 3.97 | 238 | | Single I | DH □ 104 | 2" | 280 | 132 | 7.95 | 476 | | Sin | DH □ 106 | 21/2" | 420 | 198 | 11.92 | 714 | | | DH □ 108 | 21/2" | 560 | 264 | 15.88 | 951 | | | DH □ 110 | 21/2" | 700 | 330 | 19.86 | 1189 | | | 2 x DH 🗆 108 | 21/2" | 1120 | 528 | 31.76 | 1902 | | ~ | 2 x DH 🗆 110 | 21/2" | 1400 | 661 | 39.71 | 2378 | | Multi-Bank | 3 x DH □ 108 | 21/2" | 1679 | 793 | 47.65 | 2853 | | Ė | 3 x DH 🗆 110 | 21/2" | 2100 | 991 | 59.57 | 3567 | | 2 | 4 x DH □ 108 | 21/2" | 2239 | 1057 | 63.53 | 3804 | | | 4 x DH □ 110 | 21/2" | 2779 | 1321 | 79.43 | 4756 | Stated flows are for operation at 100 psi g (7 bar g) with reference to 68° F (20° C), 1 bar a, 0% relative water vapor pressure. For flows at other pressures apply the correction factors shown. ### **Dryer Performance** | Dwww Madala | Dewpoint | t (Standard) | ISO8573-1:2010 | Dewpoint | (Option 1) | ISO8573-1:2010
Classification | |--------------|----------|---|---------------------------|----------|------------|----------------------------------| | Dryer Models | °F | Pewpoint (Standard) Proposition Classif -40 -40 | Classification (standard) | °F | °C | (Option 1) | | DH 🗆 | -40 | -40 | Class 2 | -100 | -70 | Class 1 | ### **Technical Data** | Dryer Models | | erating
ressure | Max Op
Pı | erating
ressure | | ı Inlet
Temp | | | Max Ambient
Temp | | Electrical supply | Electrical supply | Thread Connections | Noise
Level | |---|-------|--------------------|--------------|--------------------|----|-----------------|-----|----|---------------------|----|-------------------|-------------------|--------------------|----------------| | • | psi g | bar g | psi g | bar g | °F | °C | °F | °C | °F | °C | (standard) (op | (optional) | Connections | dB (A) | | DH 🗆 | 58 | 4 | 154 | 10.5 | 35 | 2 | 122 | 50 | 131 | 55 | 400V 3ph+N | N/A | NPT or BSPP | <75 | ### **Power Consumption** | Model | Power Consumption | Full Load | |--------------|-------------------|-----------| | Model | KW h Average | Amps | | DH 🗆 102 | 1.3 | 7.2 | | DH □ 104 | 2.6 | 14.4 | | DH □ 106 | 4.0 | 21.6 | | DH □ 108 | 5.3 | 28.8 | | DH 🗆 110 | 6.6 | 36 | | 2 x DH 🗆 108 | 10.6 | 57.6 | | 2 x DH 🗆 110 | 13.2 | 72 | | 3 x DH 🗆 108 | 15.9 | 86.4 | | 3 x DH 🗆 110 | 19.8 | 108 | | 4 x DH □ 108 | 21.2 | 115.2 | | 4 x DH □ 110 |
26.4 | 144 | Heat Regenerative models have electric heaters built into the desiccant beds to further reduce purge air consumption and increase operating efficiency. ### **Controller Options** | | Function | | | | | | | | | | | | |-----------------------|------------------------|---------------------|---|----------|--------------------------------|-----------------------------------|--|---------|---------------------------------------|--|--|--| | Controller
Options | Power on
Indication | Fault
Indication | Display
Fault
Condition
Values | Interval | Service
Countdown
Timers | Configurable
Alarm
Settings | Remote
Volt Free
Alarm
Contacts | Service | DDS
Energy
Management
System | | | | | SMART | • | • | | | | | • | | | | | | | SMART DDS | • | • | | | | | • | | • | | | | | Electronic DDS | • | • | • | • | • | • | • | • | • | | | | | Temperature Corre | ction Factor C | CFT | | | | | | |------------------------------|----------------|------|------|------|------|------|------| | | °F | 77 | 86 | 95 | 104 | 113 | 122 | | Maximum Inlet
Temperature | °C | 25 | 30 | 35 | 40 | 45 | 50 | | | CFT | 0.91 | 1.00 | 1.00 | 1.32 | 1.73 | 2.23 | | Pressure Correction | n Factor CFP | | | | | | | | | |---------------------------|--------------|------|------|------|------|------|------|------|------| | | psi g | 58 | 73 | 87 | 102 | 116 | 131 | 145 | 152 | | Minimum
Inlet Pressure | bar g | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 10.5 | | | CFP | 1.60 | 1.33 | 1.14 | 1.00 | 0.89 | 0.80 | 0.73 | 0.70 | | Dewpoint Corre | ction Factor CFD | Standard | Option 1 | |-----------------------|------------------|----------|----------| | | PDP °F | -40 | -100 | | Required Dewpoint | PDP °C | -40 | -70 | | | CFD | 1.00 | 1.43 | ### **Weights and Dimensions** | | | | | | | Weight | | | | | |----------|--------------|------|-----------|------|-----------|--------|----------|--------|-----|--| | Model | Pipe
Size | Н | eight (H) | V | vidth (W) | | epth (D) | weight | | | | | | ins | ins mm | | mm | ins | mm | lbs | kg | | | DH 🗆 102 | 2" | 62.1 | 1578 | 28.2 | 717 | 12.6 | 321 | 331 | 150 | | | DH ☐ 104 | 2" | 62.1 | 1578 | 37.3 | 947 | 12.6 | 321 | 540 | 245 | | | DH □ 106 | 21/2" | 62.1 | 1578 | 46.3 | 1177 | 12.6 | 321 | 717 | 325 | | | DH □ 108 | 21/2" | 62.1 | 1578 | 55.4 | 1407 | 12.6 | 321 | 970 | 440 | | | DH □ 110 | 21/2" | 62.1 | 1578 | 64.4 | 1637 | 12.6 | 321 | 1246 | 565 | | ### **Recommended Filtration** | Model | Filter Pipe Size
NPT | Inlet General
Purpose Pre-filter | Inlet High
Efficiency Filter | Outlet
Dust Filter | |----------|-------------------------|-------------------------------------|---------------------------------|-----------------------| | DH ☐ 102 | 2" | AO040HNFI | AAO40HNFI | ARO40HNMI | | DH □ 104 | 2" | AO040HNFI | AAO40HNFI | ARO40HNMI | | DH □ 106 | 2 1/2" | AO050INFI | AAO50INFI | ARO50INMI | | DH □ 108 | 2 1/2" | AO050INFI | AAO50INFI | ARO50INMI | | DH □ 110 | 2 1/2" | AO050INFI | AAO50INFI | ARO50INMI | ### **Dryer Coding Example** Example: PNEUDRI model DHS308DS ### **PNEUDRI MX** ### **Product Selection** | | Model | Pipe Size | | Flowr | ates | | |-------------|--------------|-----------|------|-------|---------------------|--------------------| | | Model | Pipe Size | cfm | L/s | m ³ /min | m ³ /hr | | | MX □ 102C | 2" | 240 | 113 | 6.81 | 408 | | 녿 | MX □ 103C | 2" | 360 | 170 | 10.22 | 612 | | Baı | MX 🗆 103 | 2" | 450 | 213 | 12.78 | 765 | | Single Bank | MX □ 104 | 2" | 600 | 283 | 17.03 | 1020 | | S | MX □ 105 | 21/2" | 750 | 354 | 21 | 1275 | | | MX □ 106 | 21/2" | 900 | 425 | 26 | 1530 | | | MX □ 107 | 21/2" | 1050 | 496 | 30 | 1785 | | | MX □ 108 | 21/2" | 1200 | 567 | 34 | 2040 | | | 2 x MX 🗆 105 | 21/2" | 1500 | 708 | 43 | 2550 | | | 2 x MX 🗆 106 | 21/2" | 1800 | 850 | 51 | 3060 | | ank | 2 x MX 🗆 107 | 21/2" | 2100 | 992 | 60 | 3570 | | Multi-Bank | 2 x MX 🗆 108 | 21/2" | 2400 | 1133 | 68 | 4080 | | Σ | 3 x MX □ 106 | 21/2" | 2700 | 1275 | 77 | 4590 | | | 3 x MX 🗆 107 | 21/2" | 3150 | 1488 | 89 | 5355 | | | 3 x MX 🗆 108 | 21/2" | 3600 | 1700 | 102 | 6120 | Stated flows are for operation at 100 psi g (7 bar g) with reference to $68^{\circ}F$ (20°C), 1 bar a, 0% relative water vapor pressure. For flows at other pressures apply the correction factors shown. ### **Dryer Performance** | Dryer Models | | ewpoint
andard) | ISO8573-1:2010
Classification | Dewpoint
(Option 1) | | ISO8573-1:2010
Classification | Dewpoint
(Option 2) | | ISO8573-1:2010
Classification | | |--------------|-----|--------------------|----------------------------------|------------------------|-----|----------------------------------|------------------------|-----|----------------------------------|--| | • | °F | °C | (standard) | °F | °C | (Option 1) | °F | °C | (Option 2) | | | MX 🗆 | -40 | -40 | Class 2 | -100 | -70 | Class 1 | -4 | -20 | Class 3 | | | MXP* | -40 | -40 | Class 2 | -100 | -70 | Class 1 | -4 | -20 | Class 3 | | ### **Technical Data** | Dryer
Models | | Min
erating
essure | | Max erating essure | Оре | Min
erating
Temp | Оре | Max
erating
Temp | Ar | Max
nbient
Temp | Electrical supply | Electrical supply | Thread Connections | Noise
Level | |-----------------|-------|--------------------------|-------|--------------------|-----|------------------------|-----|------------------------|-----|-----------------------|---------------------------|-------------------|--------------------|----------------| | Models | psi g | bar g | psi g | bar g | °F | °C | °F | °C | °F | °C | (Standard | (optional) | Connections | dB (A) | | MXS | 58 | 4 | 190 | 13 | 35 | 2 | 122 | 50 | 131 | 51 | 85 - 265 V
1ph 50/60Hz | N/A | NPT or BSPP | <75 | | MXA | 58 | 4 | 190 | 13 | 35 | 2 | 122 | 50 | 131 | 51 | 85 - 265 V
1ph 50/60Hz | N/A | NPT or BSPP | <75 | | MXP* | 58 | 4 | 190 | 13 | 35 | 2 | 122 | 50 | 131 | 51 | N/A | N/A | NPT or BSPP | <75 | ### **Controller Options** | | Function | | | | | | | | | | | | |-----------------------|---------------------|---------------------|--------------------------------------|-----------------------------------|--------------------------------|-----------------------------------|---------------------------------------|---------|------------|--|--|--| | Controller
Options | Power on Indication | Fault
Indication | Display Fault
Condition
Values | Service
Interval
Indication | Service
Countdown
Timers | Configurable
Alarm
Settings | Remote Volt
Free Alarm
Contacts | Service | Management | | | | | SMART | • | • | | • | | | • | | | | | | | SMART DDS | • | • | | • | | | • | | • | | | | | ADVANCED | • | • | • | • | • | • | • | • | • | | | | ### *ATEX compliant option available. For hazardous environments, a fully pneumatic ATEX compliant version of PNEUDRI is available. ATEX Directive 94/9/EC Group II, Category 2GD, T6. | Temperature Co | Temperature Correction Factor CFT | | | | | | | | | | | | |------------------------------|-----------------------------------|--------|------|----------|------|--------|------|------|------|------|------|--| | | °F | 7 | 7 | 86 | | 95 | | 104 | | 3 | 122 | | | Maximum Inlet
Temperature | °C | 2 | 25 | 30 | | 35 | | 40 | 4 | 5 | 50 | | | • | CFT | 1.0 | 00 | 1.00 | 1.00 | | | 1.04 | 1.1 | 4 | 1.37 | | | Pressure Correct | Pressure Correction Factor CFP | | | | | | | | | | | | | | bar g | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | | Minimum
Inlet Pressure | psi g | 58 | 73 | 87 | 100 | 116 | 131 | 145 | 160 | 174 | 189 | | | | CFP | 1.60 | 1.33 | 1.14 | 1.00 | 0.89 | 0.80 | 0.73 | 0.67 | 0.62 | 0.57 | | | Dewpoint Corre | ction Factor CFD | Option | 2 | Standard | Ор | tion 1 | | | | | | | | | PDP °C | -: | 20 | -40 | | -70 | | | | | | | | Required
Dewpoint | PDP °F | | -4 | -40 | | -100 | | | | | | | | | CFD | 0.9 | 91 | 1.00 | 1.43 | | | | | | | | ### **Weights and Dimensions** | | | | | Dimen | sions | | | | W-: | |-----------|--------------|------------|------|-------|-----------|------|----------|--------|-----| | Model | Pipe
Size | Height (H) | | w | Width (W) | | epth (D) | Weight | | | | | ins | mm | ins | mm | ins | mm | lbs | kg | | MX □ 102C | 2" | 64.8 | 1647 | 27.0 | 687 | 21.7 | 550 | 518 | 235 | | MX □ 103C | 2" | 64.8 | 1647 | 33.7 | 856 | 21.7 | 550 | 696 | 316 | | MX □ 103 | 2" | 74.5 | 1892 | 33.7 | 856 | 21.7 | 550 | 782 | 355 | | MX □ 104 | 2" | 74.5 | 1892 | 40.3 | 1025 | 21.7 | 550 | 992 | 450 | | MX □ 105 | 21/2" | 74.5 | 1892 | 47.0 | 1194 | 21.7 | 550 | 1197 | 543 | | MX □ 106 | 21/2" | 74.5 | 1892 | 53.6 | 1363 | 21.7 | 550 | 1404 | 637 | | MX □ 107 | 21/2" | 74.5 | 1892 | 60.3 | 1532 | 21.7 | 550 | 1611 | 731 | | MX □ 108 | 21/2" | 74.5 | 1892 | 67.0 | 1701 | 21.7 | 550 | 1818 | 825 | ### **Recommended Filtration** | For Dryer
Model | Filter
Pipe Size
NPT | Inlet
General Purpose
Pre-filter | Inlet
High Efficiency
Filter | Outlet
Dust Filter | |--------------------|----------------------------|--|------------------------------------|-----------------------| | MX □ 102C | 2" | AO040HNFI | AA040HNFI | AR040HNMI | | MX □ 103C | 2" | AO040HNFI | AA040HNFI | AR040HNMI | | MX □ 103 | 2" | AO045HNFI | AA045HNFI | AR045HNMI | | MX □ 104 | 2" | AO045HNFI | AA045HNFI | AR045HNMI | | MX □ 105 | 21/2" | AO050INFI | AA050INFI | AR050INMI | | MX □ 106 | 21/2" | AO055INFI | AA055INFI | AR055INMI | | MX □ 107 | 21/2" | AO055INFI | AA055INFI | AR055INMI | | MX □ 108 | 21/2" | AO055INFI | AA055INFI | AR055INMI | ### **Dryer Coding Example** Example: PNEUDRI model MXS308DS ## **PNEUDRI MPX** ### **Product Selection** | Model | Pipe Size | Flowrates | | | | | | | | |---------------|-----------|-----------|------|--------|-------|--|--|--|--| | Model | Pipe Size | cfm | L/s | m³/min | m³/hr | | | | | | MPX □ 110 | 4" | 1381 | 652 | 39 |
2346 | | | | | | MPX □ 112 | 4" | 1657 | 782 | 47 | 2815 | | | | | | 2 x MPX 🗆 110 | 4" | 2762 | 1303 | 78 | 4692 | | | | | | 2 x MPX 🗆 112 | 4" | 3314 | 1564 | 94 | 5630 | | | | | | 3 x MPX □ 110 | 4" | 4143 | 1955 | 118 | 7038 | | | | | | 3 x MPX □ 112 | 4" | 4971 | 2346 | 141 | 8445 | | | | | Stated flows are for operation at 100 psi g (7 bar g) with reference to 68° F (20°C), 1 bar a, 0% relative water vapor pressure. For flows at other pressures apply the correction factors shown. ### **Dryer Performance** | Dryer Models | Dewpoin | t (Standard) | ISO8573-1:2010 | Dewpoint | (Option 1) | ISO8573-1:2010 | |--------------|---------|--------------|---------------------------|----------|------------|---------------------------| | | °F | °C | Classification (standard) | °F | °C | Classification (Option 1) | | МРХ □ | -40 | -40 | Class 2 | -100 | -70 | Class 1 | ### **Technical Data** | Dryer | Min Operating
Pressure | | lin Operating Max Operating Pressure Pressure | | | n Operating Max Operating Temp | | Max Ambient
Temp | | Electrical supply | Electrical supply | Thread | Noise
Level | | |--------|---------------------------|-------|---|-------|----|--------------------------------|-----|---------------------|-----|-------------------|----------------------|----------------------|----------------|--------| | Models | psi g | bar g | psi g | bar g | °F | °C | °F | °C | °F | °C | (atandard | (optional) | Connections | dB (A) | | МРХ □ | 58 | 4 | 190 | 13 | 35 | 2 | 122 | 50 | 131 | 55 | 110 V 1ph
50/60Hz | 230 V 1PH
50/60Hz | NPT or BSPP | <75 | ### **Controller Options** | Controller
Options | | Function | | | | | | | | | | | |-----------------------|------------------------|---------------------|-----------------------------------|-----------------------------------|--------------------------------|-----------------------------------|---------------------------------------|----------------------------|------------------------------------|--|--|--| | | Power on
Indication | Fault
Indication | Display Fault
Condition Values | Service
Interval
Indication | Service
Countdown
Timers | Configurable
Alarm
Settings | Remote Volt
Free Alarm
Contacts | Filter
Service
Timer | DDS Energy
Management
System | | | | | SMART | • | • | | • | | | • | | | | | | | SMART DDS | • | • | | • | | | • | | • | | | | | ELECTRONIC DDS | • | • | • | • | • | • | • | • | • | | | | | Temperature Correction Factor CFT | | | | | | | | | | | | |-----------------------------------|-----|------|------|------|------|------|------|--|--|--|--| | | °F | 77 | 86 | 95 | 104 | 113 | 122 | | | | | | Maximum Inlet
Temperature | °C | 25 | 30 | 35 | 40 | 45 | 50 | | | | | | | CFT | 1.00 | 1.00 | 1.00 | 1.04 | 1.14 | 1.37 | | | | | | | | | | | | | | | | | | | Pressure Correction Factor CFP | | | | | | | | | | | | | |--------------------------------|-------|------|------|------|------|------|------|------|------|------|------|--| | Minimum
Inlet Pressure | psi g | 58 | 73 | 87 | 100 | 116 | 131 | 145 | 160 | 174 | 189 | | | | bar g | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | | | CFP | 1.60 | 1.33 | 1.14 | 1.00 | 0.89 | 0.80 | 0.73 | 0.67 | 0.62 | 0.57 | | | Dewpoint Corre | ction Factor CFD | Standard | Option 1 | |-----------------------|------------------|----------|----------| | Required
Dewpoint | PDP °F | -40 | -100 | | | PDP °C | -40 | -70 | | | CFD | 1.00 | 1.43 | ### **Weights and Dimensions** | Model | | | | Dimen | sions | | | , | Weight | |-----------|--------------|------------|------|-----------|--------|-----------|-----|--------|--------| | | Pipe
Size | Height (H) | | Width (W) | | Depth (D) | | Weight | | | | | ins | mm | ins | mm | ins | mm | lbs | kg | | MPX □ 110 | 4" | 70.4 | 1788 | 87.5 | 2223 | 21.7 | 550 | 1969 | 895 | | MPX □ 112 | 4" | 70.4 | 1788 | 100.4 | 1 2551 | 21.7 | 550 | 2255 | 1025 | ### **Recommended Filtration** | Model | Filter Pipe Size
NPT | Inlet General
Purpose Pre-filter | Inlet High
Efficiency Filter | Outlet
Dust Filter | |---------|-------------------------|-------------------------------------|---------------------------------|-----------------------| | MPX 110 | 4" | AO060KNFI | AA060KNFI | AR060KNMI | | MPX 112 | 4" | AO060KNFI | AA060KNFI | AR060KNMI | ### **Dryer Coding Example** Example: PNEUDRI model MPXS312DS # The Parker domnick hunter design philosophy Parker domnick hunter has been supplying industry with high efficiency filtration and purification products since 1963. Our philosophy 'Designed for Air Quality & Energy Efficiency' ensures products that not only provide the user with clean, high quality compressed air, but also with low lifetime costs and reduced carbon dioxide (CO_2) emissions. ### **PNEUDRI Options** ### **DDS Energy Management Systems** Operational costs associated with providing such dry compressed air can be high. If desiccant dryers are not optimized correctly, desiccant regeneration can consume huge amounts of energy; indeed, drying costs can often be as high as 80% of total operational costs. To address this issue, Parker domnick hunter has developed a new generation of energy efficient air dryers that allows businesses to cut operating costs and remain environmentally responsible while providing the highest quality compressed air. PNEUDRI desiccant air dryers can be fitted with Dewpoint Dependent Switching (DDS) energy saving controls that eliminate unnecessary desiccant regeneration cycles to provide considerable energy savings. By directly monitoring the outlet air quality (dewpoint) of the dryer, the system can automatically extend the "drying period" beyond a normally fixed cycle time if the on-line drying chamber has adsorptive capacity remaining. As compressed air systems rarely operate at full rated capacity all of the time (e.g. during shift work and periods of low demand), this energy management system can provide considerable savings. During this extended period of energy free drying, no purge air energy is consumed for regeneration. ### DDS Energy Saving (Heatless Dryer example shown) | Air Demand % | Energy Saving % | Energy Saving
P/A Kw | Environmental Saving P/A Kg CO ₂ | |--------------|-----------------|-------------------------|---| | 100 | 33.00 | 95,040 | 50,371 | | 90 | 40.00 | 115,200 | 61,056 | | 80 | 47.00 | 135,360 | 71,741 | | 70 | 53.00 | 152,640 | 80,899 | | 60 | 60.00 | 172,800 | 91,584 | | 50 | 66.00 | 190,080 | 100,742 | System pressure 87 psi g (6 bar g). Max Temp 95°F (35°C). System flow 1000 cfm (1700 m³/hr). Average pressure 94.3 psi g (6.5 bar g). Average Temp 86°F (30°C). ### **PNEUDRI** for ### hazardous environments Where clean, dry compressed air is required in hazardous environments, e.g. petrochemical and offshore oil & gas applications, Parker domnick hunter can supply fully pneumatic ATEX compliant PNEUDRI dryers. ATEX Directive 94/9/EC Group II, Category 2GD, T6 ### Flow Control Devices for multi-banked dryers To prevent overflowing your compressed air system and to assist in maintaining pressure dewpoint, Flow Control Devices (FCD's) are available for multi-banked PNEUDRI DH, PNEUDRI MX and PNEUDRI MPX models. For a set flowrate, air will flow through a uniform pipe at a constant velocity, however, the velocity will increase if there is a reduction in the pipe diameter. If the pipe diameter is further decreased, the air flow will continue to increase to a maximum velocity. FCD's or sonic nozzles will restrict the airflow to 125% of the dryers rated flow and any further attempt to increase the airflow will cause "choking" and a very high pressure drop. Please contact Parker domnick hunter for further information. ### **Benefits** - Prevents significant overflow of the dryer. - Helps to maintain a constant outlet pressure dewpoint. - Indicates by high pressure drop when system demand exceeds rated capacity. ### **Aftermarket** ### Compressed air equipment users demand much more than the supply of high quality products in order to maintain a competitive edge. Modern production technology is increasingly demanding the provision of a higher purity and more reliable compressed air supply. Products and solutions that are manufactured by Parker domnick hunter are designed to provide air quality that meets with and often exceeds international standards. As well as the requirement for air purity and reliability, there are additional factors to consider when choosing the right service provider for your compressed air and gas purification system. For example, knowledge of the many regulations regarding the management of industrial waste, energy efficiency improvement programs and consideration of any environmental impact. It is anticipated that future legislations will demand further in-depth technical and knowledge-based support from service providers. Our commitment to industry does not stop with the supply of high quality products. We are also committed to ensuring that our equipment provides high performance by providing a trouble-free service from a bespoke maintenance and verification package – all tailored to your own specific requirements. We offer a wide range of valuable services that will impact positively on your drive towards improved production efficiency and product quality with reduced production rejections and operational costs. From initial selection to installation, commissioning, preventative maintenance and specialised services, Parker domnick hunter is redefining customer service. ### Filter Elements and Consumable Parts Genuine Replacement filter elements Preventative Maintenance Kits Repair Kits Installation Kits Upgrade Kits ## Maintenance, Repair and Overhaul Installation and Commissioning Maintenance and Repair Updates and Upgrades Service Contracts Parts Service Warranty ### **Customer Support** Business Development
Technical Support Group Training Technical Publications ### **Specialized Services** Air Quality Testing Dewpoint Measurement Leak Detection Particle Counting Micro-biological Testing ## Parker's Motion & Control Technologies Parker is guided by a relentless drive to help our customers become more productive and achieve higher levels of profitability by engineering the best systems for their requirements. It means looking at customer applications from many angles to find new ways to create value. Whatever the motion and control technology need, Parker has the experience, • Commercial transports breadth of product and global reach to consistently deliver. No company knows more about motion and control technology than Parker. For further info call 716 686 6400. ### **AEROSPACE** ### **Key Markets** - · Aircraft engines - · Business & general aviation - · Land-based weapons systems - Military aircraft - Missilés & launch vehicles - · Regional transports - · Unmanned aerial vehicles #### **Key Products** - · Flight control systems - & components - Fluid conveyance systems - Fluid metering delivery & atomization devices - Fuel systems & components - · Hydraulic systems & components - · Inert nitrogen generating systems - · Pneumatic systems & components - · Wheels & brakes ### **CLIMATE CONTROL** - Agriculture - · Air conditioning - · Food, beverage & dairy - · Life sciences & medical - · Precision cooling - Processing - Transportation ### **Key Products** - · CO2 controls · Electronic controllers - · Filter driers - · Hand shut-off valves - · Hose & fittings - · Pressure regulating valves - · Refrigerant distributors - · Safety relief valves - · Solenoid valves - · Thermostatic expansion valves ### **ELECTROMECHANICAL** - Aerospace - · Factory automation - Food & beverage · Life science & medical - · Machine tools - · Packaging machinery - Paper machinery - · Plastics machinery & converting - · Primary metals - · Semiconductor & electronics - Textile - · Wire & cable ### **Key Products** - · AC/DC drives & systems - Electric actuators · Controllers - Gantry robots - Gearheads - Human machine interfaces - · Industrial PCs - Inverters - · Linear motors, slides and stages - · Precision stages - · Stepper motors - · Servo motors, drives & controls - · Structural extrusions ### **FILTRATION** - Food & beverage · Industrial machinery - Life sciences - Marine - · Mobile equipment - · Oil & gas - Power generation - Process - Transportation ### **Key Products** - · Analytical gas generators - · Compressed air & gas filters - · Condition monitoring - Engine air, fuel & oil filtration & systems - · Hydraulic, lubrication & coolant filters - · Process, chemical, water & microfiltration filters - · Nitrogen, hydrogen & zero air generators ### **FLUID & GAS HANDLING** ### **Key Markets** - Aerospace - Aariculture - Bulk chemical handling. - Construction machinery - · Food & beverage · Fuel & gas delivery - Industrial machinery - Mobile - · Oil & gas - Transportation - · Welding ### **Key Products** - · Brass fittings & valves · Diagnostic equipment - Fluid conveyance systems - Industrial hose • PTFE & PFA hose, tubing & - plastic fittings · Rubber & thermoplastic hose - & couplings Tube fittings & adapters - · Quick disconnects ### **HYDRAULICS** ### **Key Markets** - Aerospace - Aerial lift - Agriculture Construction machinery - Forestry - Industrial machinery - Mining - Oil & gas - · Power generation & energy Truck hydraulics ### **Key Products** - Diagnostic equipment · Hydraulic cylinders - & accumulators · Hydraulic motors & pumps - Hvdraulic systems . Hydraulic valves & controls - Power take-offs · Rubber & thermoplastic hose - & couplings . Tube fittings & adapters - · Quick disconnects ### **PNEUMATICS** - **Key Markets** - Aerospace Conveyor & material handling - Factory automation - Food & beverage - Life science & medical - · Machine tools - · Packaging machinery Transportation & automotive - **Key Products** - Air preparation Compact cylinders - · Field bus valve systems Grippers - · Guided cylinders - Manifolds · Miniature fluidics - Pneumatic accessories Pneumatic actuators & grippers - Pneumatic valves and controls - Rodless cylinders Rotary actuators - Tie rod cylinders - Vacuum generators, cups & sensors ### PROCESS CONTROL - **Key Markets** - Chemical & refining. . Food, beverage & dairy - Medical & dental - Microelectronics • Oil & gas - Power generation ### **Key Products** - · Analytical sample conditioning - products & systems Fluoropolymer chemical delivery fittings, valves & pumps - · High purity gas delivery fittings, valves & regulators · Instrumentation fittings, valves - & regulators - Medium pressure fittings & valves · Process control manifolds ### **SEALING & SHIELDING** - **Key Markets** - Aerospace - · Chemical processing Consumer - Energy, oil & gas Fluid power - · General industrial · Information technology - · Life sciences Military - Semiconductor · Telecommunications - Transportation - **Key Products** · Dynamic seals - · Elastomeric o-rings · EMI shielding · Extruded & precision-cut, - fabricated elastomeric seals Homogeneous & inserted elastomeric shapes - High temperature metal seals Metal & plastic retained composite seals · Thermal management ### Worldwide Filtration Manufacturing Locations ### **North America** ### **Compressed Air Treatment** Filtration & Separation/Balston Haverhill, MA 978 858 0505 www.parker.com/balston ### **Finite Airtek Filtration** Airtek/domnick hunter/Zander Lancaster, NY 716 686 6400 www.parker.com/faf ### Finite Airtek Filtration/Finite Oxford, MI 248 628 6400 www.parker.com/finitefilter ### **Engine Filtration & Water Purification** #### Racor Modesto, CA 209 521 7860 www.parker.com/racor ### Racor Holly Springs, MS 662 252 2656 www.parker.com/racor #### Racor Beaufort, SC 843 846 3200 www.parker.com/racor ### Racor - Village Marine Tec. Gardena, CA 310 516 9911 desalination.parker.com ### **Hydraulic Filtration Hydraulic Filter** Metamora, OH 419 644 4311 www.parker.com/hydraulicfilter ### **Process Filtration** domnick hunter Process Filtration Oxnard, CA 805 604 3400 www.parker.com/processfiltration ### **Europe** ### **Compressed Air Treatment** domnick hunter Filtration & Separation Gateshead, England +44 (0) 191 402 9000 www.parker.com/dhfns ### Parker Gas Separations Etten-Leur. Netherlands +31 76 508 5300 www.parker.com/dhfns #### **Hiross Zander** Padova Business Unit Padova, Italy +39 049 9712 111 www.parker.com/hzd ### **Hiross Zander** Essen Business Unit Essen, Germany +49 2054 9340 www.parker.com/hzd ### **Engine Filtration &** Water Purification ### Racor Dewsbury, England +44 (0) 1924 487 000 www.parker.com/rfde ### Racor Research & Development Stuttgart, Germany +49 (0)711 7071 290-10 www.parker.com/rfde ### **Hydraulic Filtration** ### **Hvdraulic Filter** Arnhem, Holland +31 26 3760376 www.parker.com/hfde ### **Urjala Operation** Urjala, Finland +358 20 753 2500 www.parker.com/hfde ### **Condition Monitoring Center** Norfolk, England +44 1842 763 299 www.parker.com/hfde ### **Process Filtration** domnick hunter Process Filtration Birtley, England +44 (0) 191 410 5121 www.parker.com/processfiltration ### **Asia Pacific** ### Australia Castle Hill. Australia +61 2 9634 7777 www.parker.com/australia #### China Shanghai, China +86 21 5031 2525 www.parker.com/china ### India Navi Mumbai, India +91 22 651 370 8185 www.parker.com/india ### Japan Tokyo, Japan +81 45 870 1522 www.parker.com/japan #### Korea Hwaseon-City +82 31 359 0852 www.parker.com/korea ### Singapore Jurong Town, Singapore +65 6887 6300 www.parker.com/singapore ### Thailand Bangkok, Thailand +66 2 186 7000 www.parker.com/thailand ### **Latin America** ### Parker Comercio Ltda. **Filtration Division** Sao Paulo, Brazil +55 12 4009 3500 www.parker.com/br ### Pan American Division Miami. FL 305 470 8800 www.parker.com/panam ### **Africa** Aeroport Kempton Park, South Africa +27 11 9610700 www.parker.com/africa © 2012 Parker Hannifin Corporation. Product names are trademarks or registered trademarks of their respective companies. Catalog: 174004406_00_EN 02/11 NA Parker Hannifin Corporation **Finite Airtek Filtration Division** 4087 Walden Avenue Lancaster, NY 14086 phone 716 686 6400 www.parker.com/faf