

aerospace
climate control
electromechanical
filtration
fluid & gas handling
hydraulics
pneumatics
process control
sealing & shielding

Cilindros neumáticos ISO

Serie P1D-B De acuerdo con ISO 15552

PDF2659TCFS Enero de 2013

Contenido	página
Gama de cilindros P1D-B – ISO 15552	4 - 5
Fuerzas del cilindro variante doble efecto	6
Datos principales: P1D-B	6
Masa total, incluidas piezas móviles	6
Datos técnicos generales	7
Datos de funcionamiento y ambientales	7
Especificación de los materiales	7
Carreras estándar	8
Características de la amortiguación	8
Guía para seleccionar el tubo adecuado	9
Serie de válvulas con caudales correspondientes en NI/min	10
Referencias de carreras estándar del P1D-B	11 - 12
Dimensiones	13
Montajes de cilindro	14 - 18
Montajes del vástago	19 - 20
Accesorios	21
Sensores	22 - 24
Kits de juntas de P1D-B	25
Grasa para P1D-B	25
Kit de juntas	25
Calidad del aire	26

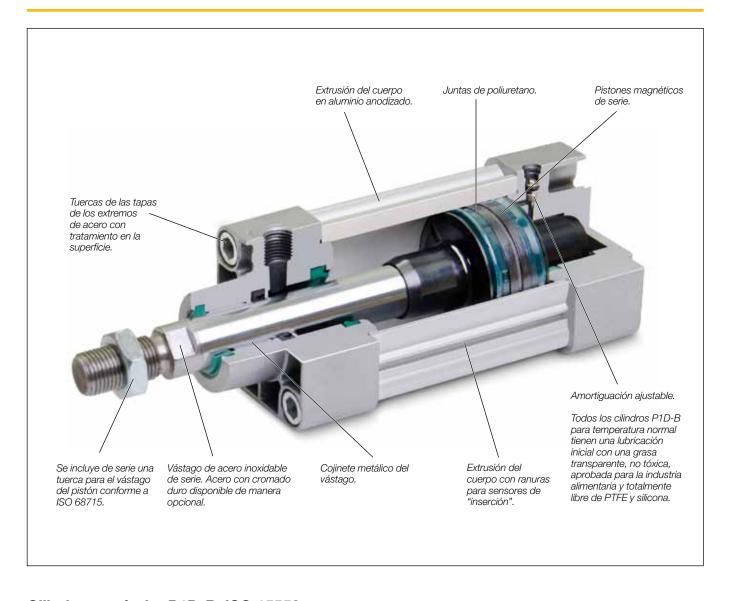
Importante

Antes de intentar realizar algún trabajo externo o interno en el cilindro o en los componentes conectados, asegúrese de que el cilindro esté ventilado y desconectado del suministro de aire a fin de asegurar el aislamiento del suministro de aire.

Nota

Todos los datos técnicos de este catálogo corresponden a datos típicos únicamente. La calidad del aire es fundamental para lograr una máxima vida útil del cilindro (consulte ISO 8573).

ADVERTENCIA


LA SELECCIÓN INCORRECTA O LA AUSENCIA DE ELLA, ASÍ COMO EL USO INCORRECTO DE LOS PRODUCTOS Y/O SISTEMAS AQUÍ DESCRITOS O DE ELEMENTOS RELACIONADOS, PUEDEN CAUSAR MUERTES, LESIONES O DAÑOS A BIENES.

Este documento y demás información procedente de Parker Hannifin Corporation, sus filiales o distribuidores autorizados proporciona opciones de productos y/o sistemas que los usuarios con conocimientos técnicos pueden investigar. Es importante que analice todos los aspectos del uso al que lo va a destinar y que consulte la información relativa al producto o sistema en el catálogo de productos actualizado. Debido a la variedad de condiciones de funcionamiento y de aplicaciones para estos productos o sistemas, el usuario, mediante su propio análisis y prueba, es el único responsable de realizar la selección final de los productos y sistemas, y de asegurarse de que se cumplen todos los requisitos de rendimiento, seguridad y advertencia. Los productos descritos en este documento, incluidas, entre otras cosas, las características, las especificaciones, los diseños, la disponibilidad y los precios de los productos, están sujetos a cambio por parte de Parker Hannifin Corporation y sus filiales en cualquier momento y sin previo aviso.

CONDICIONES DE VENTA

Los artículos que se describen en el presente documento son comercializados por Parker Hannifin Corporation, sus fil las disposiciones que se declaran en los términos y condiciones de venta de Parker (copia disponible a petición). o distribuidores autorizados. Todo contrato de venta celebrado por Parker estará sujeto a

Cilindros estándar P1D-B, ISO 15552

Gama de productos mundiales

La serie P1D-B cumple con las especificaciones de la norma ISO 15552. Es decir, que es completamente intercambiable con cualquier cilindro ISO 15552 en cualquier lugar del mundo. P1D-B estará disponible a través de la amplia organización mundial de Parker Hannifin para su beneficio y el de sus clientes.

Características

- Conformidad con ISO 15552.
- Diámetros de 32-125 mm.
- Diseño resistente a la corrosión con camisa de aluminio anodizado y vástago de acero inoxidable.
- Tecnología de juntas de poliuretano.
- Amortiguación neumática.
- Gama de montajes disponible.
- Sensores globales de inserción P8S-G.
- Cojinete metálico del vástago.

Fuerzas del cilindro, variantes de doble efecto

Diametro	Diametro cil./ Carrera Área pistón Fuerza teórica máx. en N (bar)												
vást. pist.	mm	cm²	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0	10,0	
32/12	+ -	8,0 6,9	80 69	161 138	241 207	322 276	402 346	483 415	563 484	643 553	724 622	804 691	
40/16	+	12,6 10,6	126 106	251 212	377 318	503 424	628 530	754 636	880 742	1005 848	1131 954	1257 1060	
50/20	+	19,6 16,5	196 165	393 330	589 495	785 660	982 825	1178 990	1374 1155	1571 1319	1767 1484	1963 1649	
63/20	+	31,2 28,0	312 280	623 561	935 841	1247 1121	1559 1402	1870 1682	2182 1962	2494 2242	2806 2523	3117 2803	
80/25	+	50,3 45,4	503 454	1005 907	1508 1361	2011 1814	2513 2268	3016 2721	3519 3175	4021 3629	4524 4082	5027 4536	
100/25	+	78,5 73,6	785 736	1571 1473	2356 2209	3142 2945	3927 3682	4712 4418	5498 5154	6283 5890	7069 6627	7854 7363	
125/32	+	122,7 114,7	1227 1147	2454 2294	3682 3440	4909 4587	6136 5734	7363 6881	8590 8027	9817 9174	11045 10321	12272 11468	

+ = Carrera de ida

= Carrera de vuelta

Nota

Seleccione una fuerza teórica 50-100% mayor que la fuerza necesaria

Datos principales: P1D-B

Designación del	Cilindro		Vástago			Vástago	Amortiguad	ión Conexión	
cilindro	calibre	área	diám.	área	rosca	longitud	con- sumo ²⁾	rosca	
	mm	cm²	mm	cm ²		mm	litre		
P1D-B032••XXXX ¹⁾	32	8,0	12	1,1	M10x1,25	17	0,105	G1/8	
P1D-B040 • XXXX ¹⁾	40	12,6	16	2,0	M12x1,25	19	0,162	G1/4	
P1D-B050••XXXX ¹⁾	50	19,6	20	3,1	M16x1,5	20	0,253	G1/4	
P1D-B063 • • XXXX ¹⁾	63	31,2	20	3,1	M16x1,5	23	0,414	G3/8	
P1D-B080 • XXXX ¹⁾	80	50,3	25	4,9	M20x1,5	23	0,669	G3/8	
P1D-B100●•XXXX ¹⁾	100	78,5	25	4,9	M20x1,5	27	1,043	G1/2	
P1D-B125 • • XXXX ¹⁾	125	122,7	32	8,0	M27x2	30	1,662	G1/2	

Masa total, incluidas piezas móviles

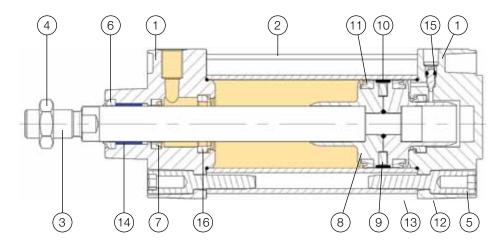
Designación del cilindro	Masa total (kg) con carrera de 0 mm	Masa total (kg) Complemento por carrera de 10 mm
P1D-B032••XXXX ¹⁾	0,55	0,023
P1D-B040 •• XXXX ¹⁾	0,80	0,033
P1D-B050 • • XXXX ¹⁾	1,20	0,048
P1D-B063 • • XXXX ¹⁾	1,73	0,051
P1D-B080 • XXXX ¹⁾	2,45	0,075
P1D-B100 • XXXX ¹⁾	4,00	0,084
P1D-B125••XXXX ¹⁾	6,87	0,138

Masa de las piezas móviles únicamente (para cálculo de la amortiguación)

•		. ,
Designación del	Masa de las pieza	s móviles (kg)
cilindro	con carrera de 0 mm	Complemento por carrera de 10 mm
P1D-B032••XXXX ¹⁾	0,13	0,009
P1D-B040 • XXXX ¹⁾	0,24	0,016
P1D-B050 • XXXX ¹⁾	0,42	0,025
P1D-B063 • • XXXX ¹⁾	0,50	0,025
P1D-B080 • XXXX ¹⁾	0,90	0,039
P1D-B100 • XXXX ¹⁾	1,10	0,039
P1D-B125 • • XXXX ¹⁾	2,34	0,063

1) XXXX = carrera

2) Consumo de aire libre por carrera de 10 mm para una doble carrera a 6 bar


Datos técnicos generales

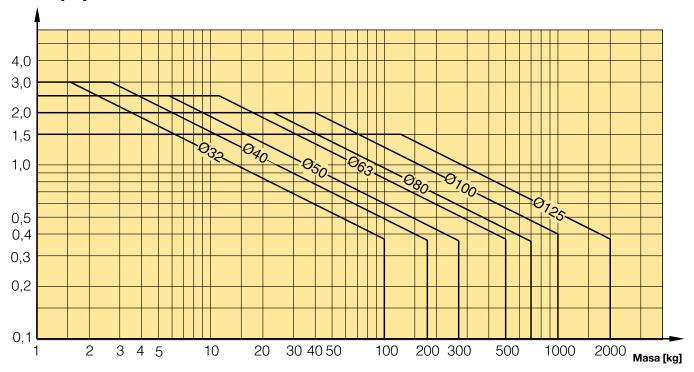
Tipo de producto	Cilindro de serie de acuerdo con ISO 15552
Tamaño de calibre	32-125 mm
Longitud de carrera	5-2.800 mm
Versiones P1D-BMS	Doble acción
Amortiguación	Amortiguación por aire ajustable
Detección de posición	Sensor de proximidad
Instalación	Montajes de cilindro P1D y del vástago del pistón
Posición de montaje	Cualquiera

Datos de funcionamiento y ambientales

Medio de funcionamiento	Para lograr la mayor vida útil posible y un funcionamiento sin problemas, se debe emplear aire comprimido seco y filtrado con una calidad según ISO 8573-1:2010 clase 3.4.3. Con esto se especifica un punto de rocío de +3 °C para el funcionamiento en interiores (se debe especificar un punto de rocío menor para el funcionamiento en exteriores) y se está en consonancia con la calidad del aire de la mayoría de los compresores estándar con un filtro estándar.
Presión de funcionamiento	Entre 0,5 bar y 10 bar
Temperatura ambiente	
Versión de serie	Entre -20 °C y +80 °C
Lubricación previa	Normalmente no es necesaria la lubricación posterior. Si se introduce lubricación adicional, debe ser continua.
Resistencia a la corrosión	Resistencia a la corrosión y a sustancias químicas.

Especificación de los materiales

Pos.	Pieza		Especificación						
1	Tapas de los extremos	3	Aluminio						
2	Camisa del cilindro		Aluminio anodizado						
3	Vástago	De serie	Acero inoxidable, DIN X 10 CrNiS 18 9						
		Opcional	Cromado duro Fe 490-2 FN						
4	Tuerca del vástago de	l pistón	Acero galvanizado						
5	Tornillos de tapas de e	extremos	Acero galvanizado						
6	Aro rascador		Poliuretano						
7	Junta del vástago		Poliuretano						
8	Pistón		Polímero POM de alta tecnología						
9	lmán		Material magnético recubierto de plástico						
10	Cojinete del pistón		Polímero POM de alta tecnología						
11	Juntas del pistón		Poliuretano						
12	Perno del pistón		Acero galvanizado						
13	Juntas tóricas		Caucho de nitrilo						
14	Cojinete del vástago		PTFE/acero de varias capas						
15	Tornillos de amortigua	ción	Acero inoxidable, DIN X 10 CrNiS 18 n9						
16	Juntas de amortiguac	ión	Poliuretano						
	Nota sobre los materia	ales	Compatible con RoHS						


Características de la amortiguación

El diagrama siguiente se utiliza para dimensionar los cilindros relacionados con la capacidad de amortiguación. La capacidad máxima de amortiguación que aparece en el diagrama supone lo siguiente:

- Baja carga, es decir, baja caída de presión en el pistón
- Velocidad en equilibrio
- Tornillo de amortiguación ajustado correctamente
- 6 bar en el puerto del cilindro

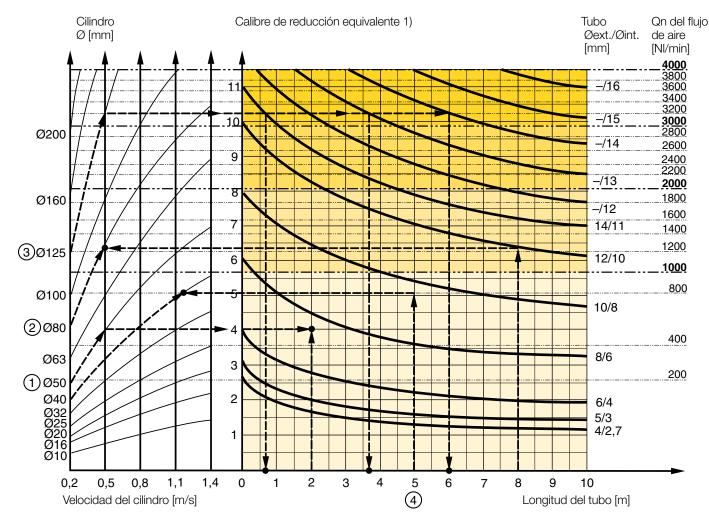
La carga es la suma de la fricción interna y externa, más las fuerzas gravitatorias. Con altas cargas relativas (caída de presión superior a 1 bar), recomendamos que, para cualquier velocidad, la masa se reduzca en un factor de 2,5 o, para una masa dada, la velocidad se reduzca en un factor de 1,5. Esto es en relación con el rendimiento máximo ofrecido en el diagrama.

Velocidad [m/s]

Guía para seleccionar el tubo adecuado

La selección del tamaño correcto de tubo a menudo se basa en la experiencia, sin prestar demasiada atención a la optimización de la eficiencia de la energía y de la velocidad del cilindro. Con frecuencia, esto es aceptable, pero la realización de un cálculo preciso puede redundar en ganancias económicas.

El principio básico es el siguiente:


- 1.La línea principal hacia la válvula de funcionamiento puede tener un tamaño excesivo (esto no provoca un consumo adicional de aire y, en consecuencia, no crea un gasto adicional de funcionamiento).
- 2.Sin embargo, los tubos entre la válvula y el cilindro deben ser óptimos según el principio de que un calibre insuficiente reduce el flujo y, por lo tanto, limita la velocidad del cilindro, mientras que una tubería de tamaño excesivo crea un volumen inactivo que hace aumentar el consumo de aire y el tiempo de llenado.

El siguiente gráfico está diseñado para ayudarle a seleccionar el tamaño correcto del tubo que se debe utilizar entre la válvula y el cilindro.

Se deben aplicar los requisitos previos siguientes:

La carga del cilindro debe ser aproximadamente el 50% de la fuerza teórica (= carga normal). Una carga menor arroja una velocidad mayor y viceversa. El tamaño del tubo se selecciona como una función del calibre del cilindro, la velocidad del cilindro deseada y la longitud del tubo entre la válvula y el cilindro.

Si desea utilizar la capacidad de la válvula al máximo y obtener una velocidad máxima, debe elegir el tubo de modo que al menos se correspondan con el diámetro de restricción equivalente (consulte la descripción a continuación), a fin de que el tubo no restrinja el flujo total. Es decir, que un tubo corto debe tener al menos el diámetro de restricción equivalente. Si el tubo es más largo, elíjalo de la tabla siguiente. Se deben elegir racores rectos para las velocidades de flujo más altas. (Los codos y banjos provocan restricciones).

- 1) El "calibre de reducción equivalente" es un reductor largo (por ejemplo, un tubo) o una serie de reductores (por ejemplo, a través de una válvula) que se convierte a un reductor corto que proporciona una velocidad de flujo correspondiente. No debe confundirse con el "orificio" que en ocasiones se especifica para las válvulas. El valor del orificio normalmente no tiene en cuenta el hecho de que la válvula contiene varios reductores.
- 2) Qn es una medida de la capacidad de flujo de la válvula, con un flujo medido en litros por minuto (l/min) a una presión de suministro de 6 bar(e) y caída de presión de 1 bar en toda la válvula.

Ejemplo (1): ¿Qué diámetro de tubo se debe utilizar?

Un cilindro de 50 mm de diametro debe funcionar a 0,5 m/s. En el diagrama, seguimos la línea desde el diametro de 50 mm a 0,5 m/s y obtenemos un "calibre de reducción equivalente" de aproximadamente 4 mm. Seguimos hacia la derecha en el gráfico e intersectamos la línea para un tubo de 2 m entre las curvas para 4 mm (tubo de 6/4) y 6 mm (tubo de 8/6). Es decir, que un tubo de 6/4 reduce algo la velocidad, mientras que un tubo de 8/6 queda un poco grande. Elegimos el tubo de 8/6 para obtener la velocidad completa del cilindro.

Ejemplo 2: ¿Qué velocidad de cilindro se obtendrá?

Se utilizará un cilindro de 80 mm de diametro conectado por un tubo de 12/10 de 8 m a una válvula con Qn de 1.200 Nl/min. ¿Qué velocidad de cilindro obtendremos? Consultamos el diagrama y seguimos la línea de la longitud de tubo de 8 mm hasta la curva para el tubo de 12/10. Desde allí, seguimos en dirección horizontal hasta la curva para el cilindro de Ø80. Encontramos que la velocidad es aproximadamente 0,5 m/s.

Ejemplo③: ¿Cuál es el diámetro interior mínimo y la longitud máxima del tubo?

Para la aplicación, se utilizará un cilindro de 125 mm de calibre. La velocidad máxima del vástago del pistón es de 0,5 m/s. El cilindro estará controlado por una válvula con Qn de 3.200 Nl/min. ¿Qué diámetro de tubo se puede utilizar y cuál es la longitud máxima del tubo?

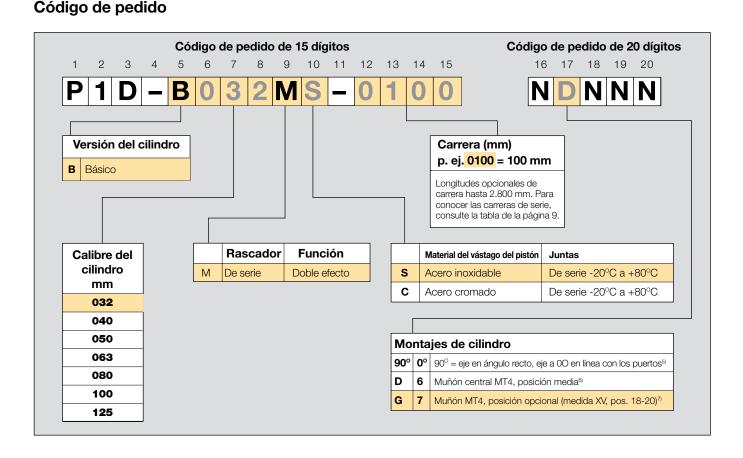
Consultamos el diagrama. Comenzamos a la izquierda del diagrama con el cilindro de Ø125. Seguimos la línea hasta la intersección con la línea de velocidad de 0,5 m/s. Desde aquí dibujamos una línea horizontal en el diagrama. Esta línea nos muestra que necesitamos un calibre de reducción equivalente de aproximadamente 10 mm. Si seguimos esta línea en dirección horizontal, cruzamos varias intersecciones. Estas intersecciones nos muestran el diámetro interior mínimo (diagrama del lado derecho) en combinación con la longitud máxima del tubo (diagrama inferior).

Por ejemplo:

Intersección uno: cuando se utilice un tubo (14/11), la longitud máxima del tubo es 0,7 metros. Intersección dos: cuando se utilice un tubo (—/13), la longitud máxima del tubo es 3,7 metros. Intersección tres: cuando se utilice un tubo (—/14), la longitud máxima del tubo es 6 metros.

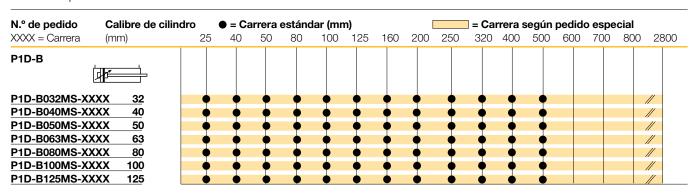
Ejemplo 4: ¿Cómo se determina el tamaño de tubo y la velocidad del cilindro con un cilindro y una válvula en concreto?

Para una aplicación que utilice un cilindro de 40 mm de calibre con una válvula con Qn=800 Nl/min. La distancia entre el cilindro y la válvula se debe ajustar en 5 m.


Dimensión del tubo: ¿Qué calibre de tubo debe seleccionarse para obtener la velocidad máxima del cilindro? A partir de la tubería de 5 m de longitud, siga la línea hacia arriba hasta la intersección con 800 Nl/min. Seleccione el siguiente diámetro de tubo más grande, en este caso Ø10/8 mm.

Velocidad del cilindro: ¿Qué velocidad máxima del cilindro se obtendrá? Siga la línea desde 800 Nl/min hacia la izquierda hasta que se intersecte con la línea para el cilindro de Ø40 mm. En este ejemplo, la velocidad es apenas superior a 1,1 m/s.

Serie de válvulas con los flujos correspondientes en NI/minuto

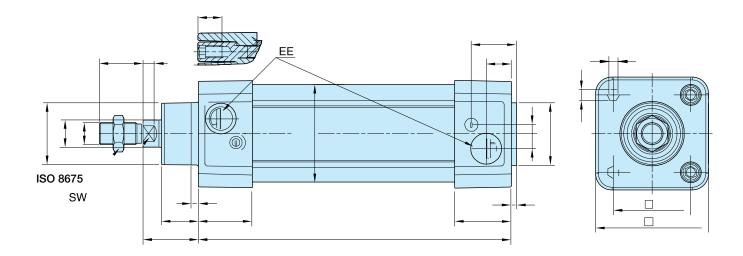

Serie de válvulas	Qn en NI/min
Interfaz PS1	120
Moduflex tamaño 1 – solenoide simple 4/2 dual	165
Adex A05	173
Isys Micro – simple 5/3 APB	228
Moduflex tamaño 1 – simple o doble 3/2	235
Isys Micro – doble 3/2	276
Isys Micro – simple 5/2	282
Moduflex tamaño 1 – simple 4/2	310
ISOMAX DX02	378
ISYS ISO HB	390
Moduflex tamaño 2 – simple o doble 3/2	440
Válvula apilable en línea PVL-B	540
Adex A12	560
ISOMAX DX01	588
Viking Xtreme P2LAX - G1/8"	660
Moduflex tamaño 2 - simple 4/2	800
ISYS ISO HA	918
ISOMAX DX1 & DX, raíl	1032
Válvula apilable en línea PVL-C	1100
ISYS ISO H1	1248
Viking Xtreme P2LBX - G1/4"	1290
ISOMAX DX2 & DX, raíl	2298
Viking Xtreme P2LCX - G3/8"	2460
ISYS ISO H2	2520
Viking Xtreme P2LDX - G1/2"	2658
ISOMAX DX3 & DX, raíl	3840
ISYS ISO H3	5022

Carreras estándar

Las carreras estándar para todos los cilindros P1D-B cumplen con ISO 4393 (a excepción de la carrera de 40 mm). Carreras especiales de hasta 2.800 mm.

Doble efecto con vástago del pistón de acero inoxidable

- Cumple con ISO 15552.
- Diámetro de 32-125 mm.
- Doble efecto.
- Vástago de acero inoxidable.
- Diseño robusto.
- Amortiguación neumática.
- Tornillos de amortiguación de acero inoxidable cautivos.
- Amplia gama de montajes y sensores de inserción.



Diámetro del cil.	Carrera	Código de pedido
mm	mm	
32	25	P1D-B032MS-0025
Con. G1/8	40	P1D-B032MS-0040
	50	P1D-B032MS-0050
	80	P1D-B032MS-0080
	100	P1D-B032MS-0100
	125	P1D-B032MS-0125
	160	P1D-B032MS-0160
	200	P1D-B032MS-0200
	250	P1D-B032MS-0250
	320	P1D-B032MS-0320
	400	P1D-B032MS-0400
	500	P1D-B032MS-0500
40	25	P1D-B040MS-0025
Con. G1/4	40	P1D-B040MS-0040
30111 311/1	50	P1D-B040MS-0050
	80	P1D-B040MS-0080
	100	P1D-B040MS-0100
	125	P1D-B040MS-0125
	160	P1D-B040MS-0160
	200	P1D-B040MS-0200
	250	P1D-B040MS-0250
	320	P1D-B040MS-0320
	400	P1D-B040MS-0400
	500	P1D-B040MS-0500
50	_ 25	P1D-B050MS-0025
Con. G1/4	40	P1D-B050MS-0040
	50	P1D-B050MS-0050
	80	P1D-B050MS-0080
	100	P1D-B050MS-0100
	125	P1D-B050MS-0125
	160	P1D-B050MS-0160
	200	P1D-B050MS-0200
	250	P1D-B050MS-0250
	320	P1D-B050MS-0320
	400	P1D-B050MS-0400
	500	P1D-B050MS-0500
63	25	P1D-B063MS-0025
Con. G3/8	40	P1D-B063MS-0040
	50	P1D-B063MS-0050
	80	P1D-B063MS-0080
	100	P1D-B063MS-0100
	125	P1D-B063MS-0125
	160	P1D-B063MS-0160
	200	P1D-B063MS-0200
	250	P1D-B063MS-0250
	320	P1D-B063MS-0320
	400	P1D-B063MS-0400
	500	P1D-B063MS-0500

Diámetro del cil.	Carrera	Código de pedido					
mm	mm						
80	25	P1D-B080MS-0025					
Con. G3/8	40	P1D-B080MS-0040					
33.11 3.37 3	50	P1D-B080MS-0050					
	80	P1D-B080MS-0080					
	100	P1D-B080MS-0100					
	125	P1D-B080MS-0125					
	160	P1D-B080MS-0160					
	200	P1D-B080MS-0200					
	250	P1D-B080MS-0250					
	320	P1D-B080MS-0320					
	400	P1D-B080MS-0400					
	500	P1D-B080MS-0500					
100	25	P1D-B100MS-0025					
Con. G1/2	40	P1D-B100MS-0040					
OUII. G1/2	50	P1D-B100MS-0050					
	80	P1D-B100MS-0080					
	100	P1D-B100MS-0100					
	125	P1D-B100MS-0125					
	160	P1D-B100MS-0160					
	200	P1D-B100MS-0200					
	250	P1D-B100MS-0250					
	320	P1D-B100MS-0320					
	400	P1D-B100MS-0400					
	500	P1D-B100MS-0500					
125	25	P1D-B125MS-0025					
Con. G1/2	40	P1D-B125MS-0040					
	50	P1D-B125MS-0050					
	80	P1D-B125MS-0080					
	100	P1D-B125MS-0100					
	125	P1D-B125MS-0125					
	160	P1D-B125MS-0160					
	200	P1D-B125MS-0200					
	250	P1D-B125MS-0250					
	320	P1D-B125MS-0320					
	400	P1D-B125MS-0400					
	500	P1D-B125MS-0500					

P1D-B básico

Dimensiones

Diámetro del cilindro	AM	В	BA	BG	D	D4	Е	EE	G	KK		L2	L8	L12	
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm			mm	mm	mm	
32	22	30	30	16	12	45,0	48,0	G1/8	28,5	M10x	1,25	16,8	94	6,0	
40	24	35	35	16	16	52,0	53,5	G1/4	33,0	M12x	1,25	19,0	105	6,5	
50	32	40	40	16	20	60,7	65,2	G1/4	33,5	M16x	1,5	24,0	106	8,0	
63	32	45	45	16	20	71,5	75,5	G3/8	39,5	M16x	1,5	24,3	121	8,0	
80	40	45	45	17	25	86,7	95,0	G3/8	39,5	M20x	1,5	30,0	128	10,0	
100	40	55	55	17	25	106,7	114,0	G1/2	44,5	M20x	1,5	34,0	138	14,0	
125	54	60	60	20	32	134,0	139,0	G1/2	51,0	M27x2	2	45,0	160	18,0	
Calibre del cilindro	OA	PL	PP	R	RT	SS	SW	П	VA	VD	WH				
mm	mm	mm	mm	mm		mm	mm	mm	mm	mm	mm				
32	6,0	14,0	24,2	32,5	M6	5,5	10	4,2	3,5	4,5	26				
40	6,0	16,0	27,5	38,0	M6	8,0	13	5,5	3,5	4,5	30				
50	8,0	14,0	29,3	46,5	M8	9,0	17	7,5	3,5	4,5	37				
63	8,0	16,6	30,8	56,5	M8	6,5	17	10,0	3,5	4,5	37				
80	6,0	16,8	33,5	72,0	M10	0	22	11,5	3,5	4,5	46				
100	6,0	20,5	37,5	89,0	M10	0	22	14,5	3,5	4,5	51				
125	8,0	23,3	45,8	110,0	M12	0	27	15,0	5,5	6,5	65				

S = carrera

Tolerancias

Diámetro del cilindro mm	В	BA	L ₈ mm	L ₉ mm	R mm	Tolerancia de la carrera hasta la carrera de 500 mm	Tolerancia de la carrera para carreras superiores a 500 mm
32	d11	d11	±0,4	±2	±0,5	+0,3/+2,0	+0,3/+3,0
40	d11	d11	±0,7	±2	±0,5	+0,3/+2,0	+0,3/+3,0
50	d11	d11	±0,7	±2	±0,6	+0,3/+2,0	+0,3/+3,0
63	d11	d11	±0,8	±2	±0,7	+0,3/+2,0	+0,3/+3,0
80	d11	d11	±0,8	±3	±0,7	+0,3/+2,0	+0,3/+3,0
100	d11	d11	±1,0	±3	±0,7	+0,3/+2,0	+0,3/+3,0
125	d11	d11	±1,0	±3	±1,1	+0,3/+2,0	+0,3/+3,0

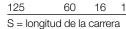
Montajes de cilindro

Brida MF1/MF2

Diseñada para el montaje fijo del cilindro. La brida se puede fijar en la tapa del extremo delantero o trasero del cilindro.

Materiales

Brida: acero con tratamiento en la superficie Tornillos de montaje según DIN 6912: acero galvanizado 8,8

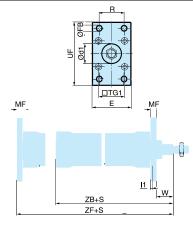

Se entregan completos con tornillos de montaje para la conexión al cilindro.

Diámetro del cil. Ø mm	Peso kg	Código de pedido
32	0,23	P1C-4KMB
40	0,28	P1C-4LMB
50	0,53	P1C-4MMB
63	0,71	P1C-4NMB
80	1,59	P1C-4PMB
100	2,19	P1C-4QMB
125	3,78	P1C-4RMB

De conformidad con ISO MF1/MF2, VDMA 24 562, AFNO Diámetro FB TG1 F R MF TF UF W 7F 7B d1 11 H13 JS14 JS14 JS14 del cil. H11 -0.5 mm mm mm mm mm mm $\,\mathrm{mm}$ mmmm mm $\,\mathrm{mm}$ mmmm32 30 32,5 32 10 64 80 5,0 16 130 123,5 35 38,0 52 40 9 36 10 72 90 5,0 20 145 138,5 50 40 9 46,5 65 45 12 90 110 6,5 25 155 146,5 6,5 63 45 9 56,5 75 50 100 25 170 161,5 12 120 80 45 12 8,0 30 177,5 72,0 95 63 16 126 150 190 55 35 100 14 89,0 115 75 16 150 170 8,0 205 192,5

20

180



16

110.0

140

90

Soporte de pie MS1

125

Diseñado para el montaje fijo del cilindro. El soporte de pie se puede fijar en la tapa del extremo delantero o trasero del cilindro.

205

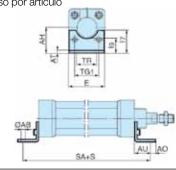
10.5 45 245

230.5

Materiales:

Soporte de pie: acero con tratamiento en la superficie Tornillos de montaje según DIN 912: acero galvanizado 8,8

Se entregan en pares con tornillos de montaje para la conexión al cilindro.


De conformidad con ISO MS	I, VDMA 24 562, AFNOR
---------------------------	-----------------------

Diámetro	AB	TG1	Е	TR	AO	AU	AH	17	AT	19	SA
del cil.	H14			JS14			JS15			JS14	
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
32	7	32,5	47	32	8	24	32	30	4,5	17,0	142
40	9	38,0	53	36	10	28	36	30	4,5	18,5	161
50	9	46,5	65	45	10	32	45	36	5,5	25,0	170
63	9	56,5	75	50	10	32	50	35	5,5	27,5	185
80	12	72,0	95	63	14	41	63	49	6,5	40,5	210
100	14	89,0	115	75	15	41	71	54	6,5	43,5	220
125	16	110,0	140	90	20	45	90	71	8,0	60,0	250

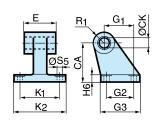
S = longitud de la carrera

Diámetro del cil. Ø mm	Peso kg	Código de pedido
32	0,06**	P1C-4KMF
40	0,08**	P1C-4LMF
50	0,16**	P1C-4MMF
63	0,25**	P1C-4NMF
80	0,50**	P1C-4PMF
100	0,85**	P1C-4QMF
125	1,48**	P1C-4RMF

Peso por artículo

Soporte	giratorio	con
cojinete	rígido	

Diseñado para el montaje flexible del cilindro. El soporte giratorio se puede combinar con el soporte de horquilla MP2.


Soporte giratorio: aluminio

Cojinete: casquillo de bronce con aceite sinterizado

De conformidad con CETOP RP 107 P, VDMA 24 562, AFNOR

DC COITIOITI	iidad 0		01 111	107 1	, 10111	1 2 - 0	JZ, 7 11 1	VOIT			
Diámetro	CK	S5	K1	K2	G1	G2	EM	G3	CA	H6	R1
del cil.	H9	H13	JS14		JS14	JS14			JS15		
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
32	10	6,6	38	51	21	18	25,5	31	32	8	10,0
40	12	6,6	41	54	24	22	27,0	35	36	10	11,0
50	12	9,0	50	65	33	30	31,0	45	45	12	13,0
63	16	9,0	52	67	37	35	39,0	50	50	12	15,0
80	16	11,0	66	86	47	40	49,0	60	63	14	15,0
100	20	11,0	76	96	55	50	59,0	70	71	15	19,0
125	25	14,0	94	124	70	60	69,0	90	90	20	22,5

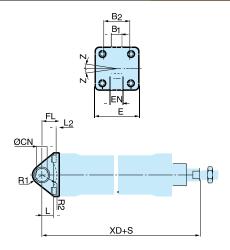
Diámetro del cil. Ø mm	Peso kg	Código de pedido
32	0,06	P1C-4KMDB
40	0,08	P1C-4LMDB
50	0,15	P1C-4MMDB
63	0,20	P1C-4NMDB
80	0,33	P1C-4PMDB
100	0,49	P1C-4QMDB
125	1,02	P1C-4RMDB

Montajes de cilindro

Soporte de anilla giratorio

Diseñado para su uso junto con el soporte de horquilla GA

Materiales: Soporte: aluminio Cojinete giratorio según DIN 648K: acero endurecido


Se entrega completo con tornillos de montaje para la conexión al cilindro.

Diámetro del cil. Ø mm	Peso kg	Código de pedido
32	0,08	PD23843
40	0,11	PD23844
50	0,20	PD23845
63	0,27	PD23846
80	0,52	PD23847
100	0,72	PD23848
125	1,53	PD23849

De conformidad con VDMA 24 562, AFNOR

		B2	EN	R1	R2	FL	12	L	CN H7	XD	Z
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	
47	10,5	-	14	16	12	22	6.0	12	10	142	4°
55	12,0	-	16	21	14	25	6.0	15	12	160	4°
65	12,0	51	16	23	16	27	7.0	15	12	170	4°
78	15,0	-	21	27	19	32	7.0	20	16	190	4°
95	15,0	-	21	29	21	36	10.0	20	16	210	4°
115	18,0	-	25	34	24	41	10.0	25	20	230	4°
140	22,0	-	31	40	30	50	10.5	30	25	275	4°
	47 55 65 78 95 115 140	47 10,5 55 12,0 65 12,0 78 15,0 95 15,0 115 18,0	47 10,5 - 55 12,0 - 65 12,0 51 78 15,0 - 95 15,0 - 115 18,0 - 140 22,0 -	47 10,5 - 14 55 12,0 - 16 65 12,0 51 16 78 15,0 - 21 95 15,0 - 21 115 18,0 - 25 140 22,0 - 31	47 10,5 - 14 16 55 12,0 - 16 21 65 12,0 51 16 23 78 15,0 - 21 27 95 15,0 - 21 29 115 18,0 - 25 34 140 22,0 - 31 40	47 10,5 - 14 16 12 55 12,0 - 16 21 14 65 12,0 51 16 23 16 78 15,0 - 21 27 19 95 15,0 - 21 29 21 115 18,0 - 25 34 24 140 22,0 - 31 40 30	47 10,5 - 14 16 12 22 55 12,0 - 16 21 14 25 65 12,0 51 16 23 16 27 78 15,0 - 21 27 19 32 95 15,0 - 21 29 21 36 115 18,0 - 25 34 24 41 140 22,0 - 31 40 30 50	47 10,5 - 14 16 12 22 6.0 55 12,0 - 16 21 14 25 6.0 65 12,0 51 16 23 16 27 7.0 78 15,0 - 21 27 19 32 7.0 95 15,0 - 21 29 21 36 10.0 115 18,0 - 25 34 24 41 10.0 140 22,0 - 31 40 30 50 10.5	47 10,5 - 14 16 12 22 6.0 12 55 12,0 - 16 21 14 25 6.0 15 65 12,0 51 16 23 16 27 7.0 15 78 15,0 - 21 27 19 32 7.0 20 95 15,0 - 21 29 21 36 10.0 20 115 18,0 - 25 34 24 41 10.0 25 140 22,0 - 31 40 30 50 10.5 30	mm mm<	mm mm<

S = longitud de la carrera

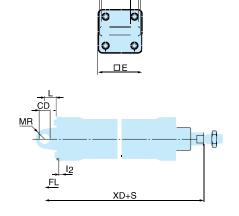
Soporte de horquilla MP2

Diseñado para el montaje flexible del cilindro. El soporte de horquilla MP2 se puede combinar con el soporte de horquilla MP4.

Materiales:

Soporte de horquilla: aluminio Pasador: acero endurecido

Anillos de seguridad según DIN 471: acero elástico Tornillos de montaje según DIN 912: acero galvanizado 8,8


Se entrega completo con tornillos de montaje para la conexión al cilindro.

Peso kg	Código de pedido
0,08	P1C-4KMTB
0,11	P1C-4LMTB
0,14	P1C-4MMTB
0,29	P1C-4NMTB
0,36	P1C-4PMTB
0,64	P1C-4QMTB
1,17	P1C-4RMTB
	kg 0,08 0,11 0,14 0,29 0,36 0,64

De conformidad con ISO MP2, VDMA 24 562, AFNOR

Diámetro	С	Е	UB	СВ	FL	L	12	CD	MR	XD
del cil.			h14	H14	±0,2			H9		
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
32	53	47	45	26	22	13	6,0	10	10	142
40	60	55	52	28	25	16	6,0	12	12	160
50	68	65	60	32	27	16	7,0	12	12	170
63	78	78	70	40	32	21	7,0	16	16	190
80	98	95	90	50	36	22	10,0	16	16	210
100	118	115	110	60	41	27	10,5	20	20	230
125	139	140	130	70	50	30	10,5	25	25	275

S = longitud de la carrera

Montajes de cilindro

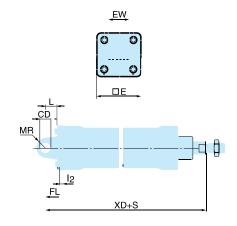
Soporte de horquilla MP4

Diseñado para el montaje flexible del cilindro. El soporte de horquilla MP4 se puede combinar con el soporte de horquilla MP2.

Materiales:

Soporte de horquilla: aluminio

Tornillos de montaje según DIN 912: acero galvanizado 8,8


Se entregan en pares con tornillos de montaje para la conexión al cilindro.

Diámetro del cil. Ø mm	Peso kg	Código de pedido
32	0,09	PD23412
40	0,13	PD23413
50	0,17	PD23414
63	0,36	PD23415
80	0,46	PD23416
100	0,83	PD23417
125	1,53	PD23418

De conformidad con ISO MP4, VDMA 24 562, AFNOR

Diámetro del cil. mm	E mm	EW mm	FL mm	L ±0,2 mm	l2 mm	CD mm	MR H9 mm	XD mm	
32	47	26	22	13	6,0	10	10	142	
40	55	28	25	16	6.0	12	12	160	
					,				
50	65	32	27	16	7,0	12	12	170	
63	78	40	32	21	7,0	16	16	190	
80	95	50	36	22	10,0	16	16	210	
100	115	60	41	27	10,5	20	20	230	
125	140	70	50	30	10,5	25	25	275	

S = longitud de la carrera

Soporte de horquilla GA

Diseñado para el montaje flexible del cilindro. El soporte de horquilla GA se puede combinar con el soporte giratorio con cojinete giratorio, el soporte giratorio de anilla y ojales de varilla giratorios.

Materiales:

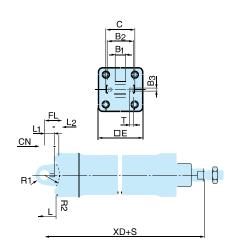
Soporte de horquilla: aluminio con tratamiento en la superficie

Pasador: acero endurecido

Pasador de bloqueo: acero elástico

Anillos de seguridad según DIN 471: acero elástico Tornillos de montaje según DIN 912: acero chapado en zinc 8.8

Se entrega completo con tornillos de montaje para la


conexión al cilindro.

Diámetro del cil. Ø mm	Peso kg	Código de pedido
32	0,09	P1C-4KMCB
40	0,13	P1C-4LMCB
50	0,17	P1C-4MMCB
63	0,36	P1C-4NMCB
80	0,58	P1C-4PMCB
100	0,89	P1C-4QMCB
125	1,75	P1C-4RMCB

De conformidad con VDMA 24 562, AFNOR

Diámetro	С	Е	B2	B1	Т	ВЗ	R2	L1	FL	12	L	CN	R1	XD
del cil.			d12	H14					±0,2			F7		
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
32	41	45	34	14	3	3,3	17	11,5	22	5,5	12	10	11	142
40	48	55	40	16	4	4,3	20	12,0	25	5,5	15	12	13	160
50	54	65	45	21	4	4,3	22	14,0	27	6,5	17	16	18	170
63	60	75	51	21	4	4,3	25	14,0	32	6,5	20	16	18	190
80	75	95	65	25	4	4,3	30	16,0	36	10,0	20	20	22	210
100	85	115	75	25	4	4,3	32	16,0	41	10,0	25	20	22	230
125	110	140	97	37	6	6,3	42	24,0	50	10,0	30	30	30	275

S = longitud de la carrera

De conformidad con VDMA 24 562, AFNOR

14,0

94

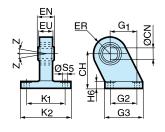
124

Montajes de cilindro

Soporte giratorio con cojinete giratorio

0

Diseñado para uso junto con soporte de horquilla GA.


Materiales:

Soporte giratorio: acero endurecido

Cojinete giratorio según DIN 648K: acero endurecido

Diámetro del cil. Ø mm	Peso kg	Código de pedido
32	0,18	KC5130
40	0,25	KC5131
50	0,47	KC5132
63	0,57	KC5133
80	1,05	KC5134
100	1,42	KC5135
125	3,10	KC5136

Ζ EU ER Diámetro CN S5 G1 G2 ΕN G3 CH H6 K1 K2 del cil. H7 H13 JS14 JS14 JS14 JS15 mm 4° 38 51 10,5 21 18 10 32 10 6,6 14 31 32 16 40 12 41 54 22 35 10 18 4° 6,6 24 16 36 12,0 50 16 9,0 50 65 15,0 33 30 21 45 45 12 21 4° 4° 63 67 15,0 50 50 12 23 16 9,0 52 37 35 21 80 20 11,0 66 86 18,0 47 40 25 60 63 14 28 4° 4° 100 20 11,0 76 96 18,0 55 50 25 70 71 15 30

Kit de montaje

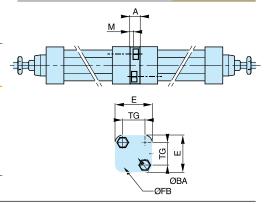
125

Kit de montaje para cilindros de montaje posterior, cilindros de 3 y 4 posiciones.

20

4°

Materiales: Montaje: aluminio


25,0 70

Tornillos de montaje: acero galvanizado 8,8

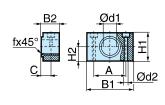
60

Diámetro del cil. Ø mm	Peso kg	Código de pedido
32	0,09	P1E-6KB0
40	0,13	P1E-6LB0
50	0,17	P1E-6MB0
63	0,36	P1E-6NB0
80	0,46	P1E-6PB0
100	0,83	P1E-6QB0

Diámetro del cil.	Е	TG	ØFB	MF	Α	ØBA		
mm	mm	mm	mm	mm	mm	mm		
32	50	32,5	6,5	5	16	30		
40	60	38,0	6,5	5	16	35		
50	66	46,5	8,5	6	20	40		
63	80	56,5	8,5	6	20	45		
80	100	72,0	10,5	8	25	45		
100	118	89,0	10,5	8	25	55		

Soporte giratorio para MT4

Diseñado para el uso con el muñón central MT4.


Materiales: Soporte giratorio: aluminio Cojinete: compuesto

Se entrega en pares.

Diámetro del cil. Ø mm	Peso kg	Código de pedido	e pedido
32	0,06	PD23381	381
40	0,06	PD23382	382
50	0,06	PD23382	382
63	0,10	PD23383	383
80	0,10	PD23383	383
100	0,175	PD23384	384
125	0,175	PD23384	384

De conformidad con ISO, VDMA 24 562, AFNOR

Do comon	illada o	011100,	V DIVID (_ 1 002,	,	•			
Diámetro	B1	B2	Α	С	d1	d2	H1	H2	fx45°
del cil.						H13			min
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
32	55	20	36	10,5	12	8,4	26	13	1,0
40	55	20	36	12,0	16	8,4	26	13	1,6
50	55	20	36	12,0	16	8,4	26	13	1,6
63	65	25	42	13,0	20	10,5	30	15	1,6
80	65	25	42	13,0	20	10,5	30	15	1,6
100	75	28	50	16,0	25	13,0	40	20	2,0
125	75	28	50	16,0	25	13,0	40	20	2,0

Muñón central MT4

Diseñado para el montaje articulado del cilindro. El muñón se instala en la fábrica en el centro del cilindro o en una ubicación opcional especificada por la medida XV. Se combina con el soporte giratorio para MT4.

Material:

Muñón: acero galvanizado

Muñón centrado

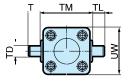
El muñón central para el P1D-B se pide con la letra D en la posición 17 (no se especifican dimensiones en las posiciones 18-20).

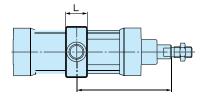
p. ej., P1D-B100MS-0500NDNNN

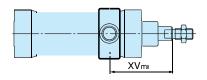
Muñón con posición opcional

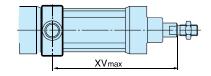
El muñón central para el P1D-B se pide con la letra G en la posición 17 y la medida XV deseada (medida de 3 dígitos en mm) en las posiciones 18-20. P. ej.,

P1D-B100MS-0500NG3000


Material: fundición de grafito nodular, acero pasivado


De conformidad con ISO MT4, VDMA 24 562, AFNOR


Diámetr	то ТМ	TL	TD	R	UW	L1	X1*	XV_{\min}	X2
del cil.	h14	h14	e9						
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
32	50	12	12	1,0	52	18	73,0	89	57
40	63	16	16	1,6	59	20	82,5	95	70
50	75	16	16	1,6	71	20	90,0	113	67
63	90	20	20	1,6	84	26	97,5	118	78
80	110	20	20	1,6	105	26	110,0	132	88
100	132	25	25	2,0	129	32	120,0	140	100
125	160	25	25	2,0	159	33	145,0	168	122


XVstd = X1 + longitud de carrera/2, XVmáx = X2 + longitud de carrera

Diámetro del cil. Ø mm	Peso kg	Código de pedido
32 40 50	0,13 0,31 0,37	Consulte el código de pedido en
63 80	0,69 0,89	la página 9
100 125	1,58 2.60	

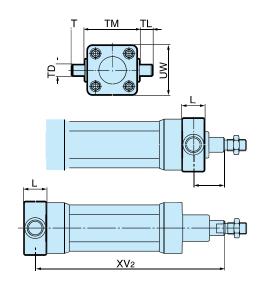
Montajes de cilindro

Muñón de montaje en brida

Diseñado para el montaje articulado del cilindro. Este muñón se puede montar en brida en la tapa del extremo delantero o trasero de todos los cilindros P1D.

Los muñones individuales tienen códigos de pedido según se indica a la derecha.

Materiales:


Muñón: acero galvanizado Tornillos: acero galvanizado 8,8

Se entrega completo con tornillos de montaje para la conexión al cilindro.

Diámetro del cil. Ø mm	Peso kg	Código de pedido
32	0,17	P1D-4KMYF
40	0,43	P1D-4LMYF
50	0,55	P1D-4MMYF
63	1,10	P1D-4NMYF
80	1,66	P1D-4PMYF
100	3,00	P1D-4QMYF

De conformidad con ISO MT4, VDMA 24 562, AFNOR

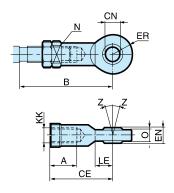
Diámetro	TM	TL	TD	R	UW	L1	XV_1	Χ	Υ
del cil.	h14	h14	e9						
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
32	50	12	12	1,0	46	14	19,5	126,5	11
40	63	16	16	1,6	59	19	21,0	144,0	14
50	75	16	16	1,6	69	19	28,0	152,0	20
63	90	20	20	1,6	84	24	25,5	169,5	20
80	110	20	20	1,6	102	24	34,5	185,5	26
100	132	25	25	2,0	125	29	37,0	203,0	31

Montajes del vástago

Ojal de varilla giratorio

Ojal de varilla giratorio para montaje articulado del cilindro. El ojal de varilla giratorio se puede combinar con el soporte de horquilla GA.

Sin necesidad de mantenimiento.


Materiales:

Ojal de varilla giratorio: acero galvanizado Cojinete giratorio según DIN 648K: acero endurecido

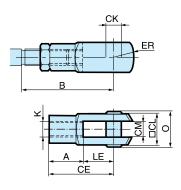
Diámetro del cil. Ø mm	Peso kg	Código de pedido
32	0,08	P1C-4KRS
40	0,12	P1C-4LRS
50	0,25	P1C-4MRS
63	0,25	P1C-4MRS
80	0,46	P1C-4PRS
100	0,46	P1C-4PRS
125	1,28	P1C-4RRS

De conformidad con ISO 8139

Diámetro	Α	В	В	CE	CN	ΕN	ER	KK	LE	Ν	0	Ζ
bore		min	max		H9	h12			min			
mm	mm	mm	mm	mm	mm	mm	mm		mm	mm	mm	
32	20	48,0	55	43	10	14	14	M10x1,25	15	17	10,5	12°
40	22	56,0	62	50	12	16	16	M12x1,25	17	19	12,0	12°
50	28	72,0	80	64	16	21	21	M16x1,5	22	22	15,0	15°
63	28	72,0	80	64	16	21	21	M16x1,5	22	22	15,0	15°
80	33	87,0	97	77	20	25	25	M20x1,5	26	32	18,0	15°
100	33	87,0	97	77	20	25	25	M20x1,5	26	32	18,0	15°
125	51	123,5	137	110	30	37	35	M27x2	36	41	25,0	15°

Horquilla

Horquilla para montaje articulado del cilindro.



Horquilla, sujetados: acero galvanizado Pasador: acero endurecido

Diámetro del cil. Ø mm	Peso kg	Código de pedido
32	0,09	P1C-4KRC
40	0,15	P1C-4LRC
50	0,35	P1C-4MRC
63	0,35	P1C-4MRC
80	0,75	P1C-4PRC
100	0,75	P1C-4PRC
125	2.10	P1C-4RRC

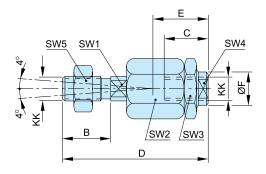
De conformidad con ISO 8140

Cyl.	Α	В	В	CE	CK	CL	CM	ER	KK	LE	0
bore		min	max		h11/E	9					
mm	mm	mm	mm	mm	mm	mm	mm	mm		mm	mm
32	20	45,0	52	40	10	20	10	16	M10x1,25	20	28,0
40	24	54,0	60	48	12	24	12	19	M12x1,25	24	32,0
50	32	72,0	80	64	16	32	16	25	M16x1,5	32	41,5
63	32	72,0	80	64	16	32	16	25	M16x1,5	32	41,5
80	40	90,0	100	80	20	40	20	32	M20x1,5	40	50,0
100	40	90,0	100	80	20	40	20	32	M20x1,5	40	50,0
125	56	123,5	137	110	30	55	30	45	M27x2	54	72,0

Montajes del vástago

Acoplamiento flexo

Acoplamiento flexo para montaje articulado del vástago del pistón. El acoplamiento flexo está diseñado para compensar los errores de ángulo axial dentro de un intervalo de $\pm 4^{\circ}$.


Material:

Acoplamiento flexo, tuerca: acero galvanizado

Se entrega completo con tuerca de ajuste galvanizada.

Diámetro del cil. Ø mm	Peso kg	Código de pedido
32	0,23	KY1129
40	0,23	KY1131
50	0,65	KY1133
63	0,65	KY1133
80	0,71	KY1134
100	0,71	KY1134
125	1,60	KC5036

Diámetro del cil.	KK	В	С	D	Е	OF	SW1	SW2	SW3	SW4	SW5
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
32	M10x1.25	20	23	73	31	21	12	30	30	19	17
40	M12x1.25	24	23	77	31	21	12	30	30	19	19
50	M16x1.5	32	32	108	45	33.5	19	41	41	30	24
63	M16x1.5	32	32	108	45	33.5	19	41	41	30	24
80	M20x1.5	40	42	122	56	33.5	19	41	41	30	30
100	M20x1.5	40	42	122	56	33.5	19	41	41	30	30
125	M27x2	54	48	147	51	39	24	55	55	32	41

Tuerca

Diseñada para el montaje fijo de accesorios en el vástago del pistón.

Materiales: acero galvanizado Se entrega en paquete de a 10

Todos los cilindros P1D se entregan con una tuerca del vástago del pistón de acero galvanizado.

Diámetro del cil. Ø mm	Peso kg	Código de pedido
32	0,007	P14-4KRPZ
40	0,010	P14-4LRPZ
50	0,021	P14-4MRPZ
63	0,021	P14-4MRPZ
80	0,040	P14-4PRPZ
100	0,040	P14-4PRPZ
125	0,100	P14-4RRPZ

De conformidad con DIN 439 B

20 0011101111110000		2	
Diámetro del cil.	А	В	С
mm	mm	mm	
32	17	5,0	M10x1,25
40	19	6,0	M12x1,25
50	24	8,0	M16x1,5
63	24	8,0	M16x1,5
80	30	10,0	M20x1,5
100	30	10,0	M20x1,5
125	41	13,5	M27x2

^{*} Peso por artículo

Nuevos sensores de inserción

Los sensores P1D se pueden instalar fácilmente desde el lateral en la ranura del sensor, en cualquier posición a lo largo de la carrera del pistón.

Los sensores se encuentran completamente embutidos, por lo que están protegidos frente a la acción mecánica. Elija entre sensores electrónicos o de lengüeta, y las distintas longitudes de cable y conectores de 8 mm y M12.

Se utilizan los mismos sensores de serie para todas las versiones de los P1D.

Sensores electrónicos

Los nuevos sensores electrónicos son de "estado sólido", es decir, que no tienen ninguna pieza móvil. Se entregan de serie con protección contra cortocircuitos y protección frente a corrientes transitorias. La electrónica incorporada hace que los sensores sean aptos para aplicaciones con altas frecuencias de conmutación de encendido y apagado, y en las que se necesita una larga vida útil.

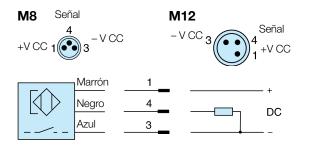
Sensores de lengüeta

Los sensores se basan en interruptores de lengüeta probados, que ofrecen un funcionamiento fiable en muchas aplicaciones. Una fácil instalación, una posición protegida en el cilindro y una indicación clara mediante LED son ventajas importantes de esta gama de sensores.

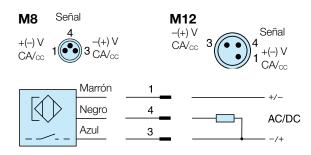
Elemento de lengüeta

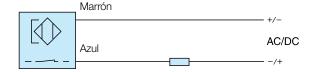
Datos técnicos

Diseño	Función magnetorresistiva
	GMR (magnetorresistencia gigante)
Instalación	Lateral, hacia abajo hacia la ranura del
	sensor, llamado "inserción"
Salida	PNP, normalmente abierta (también
	disponible en a petición)
Intervalo de tensión	10-30 V CC
	10-18 V CC, sensor ATEX
Fluctuación	máx. 10%
Caída de tensión	máx. 2,5 V
Corriente de carga	máx. 100 mA
Consumo interno	máx. 10 mA
Distancia de accionamiento	mín. 9 mm
Histéresis	máx. 1,5 mm
Precisión de repetibilidad	máx. 0,2 mm
Frecuencia de conm. enc./ap.	máx 5 kHz
Tiempo conm. enc.	máx 2 ms
Tiempo conm. ap.	máx. 2 ms
Encapsulamiento	IP 67 (EN 60529)
Intervalo de temperatura	Entre –25 °C y +75 °C
	Entre –20 °C y +45 °C, sensor ATEX
Indicación	LED, amarillo
Material de la carcasa	PA 12
Material del tornillo	Acero inoxidable
Cable	PVC o PUR 3x0,25 mm2
	consulte el código de pedido,
	respectivamente


Datos técnicos

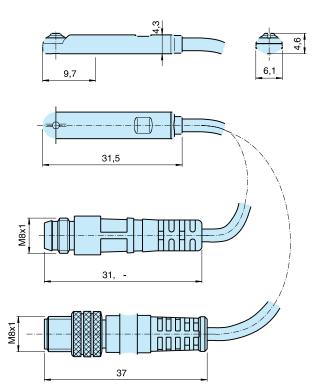
Diseño


Montaie	Lateral, hacia abajo hacia la ranura del
··· ·· ···	sensor, llamado "inserción"
Salida	Normalmente abierta o normalmente
	cerrada
Intervalo de tensión	10-30 V CA/CC o
	10-120 V CA/CC
	24-230 V CA/CC
Corriente de carga	máx. 500 mA para 10-30 V o
	máx. 100 mA para 10-120 V
	máx. 30 mA para 24-230 V
Potencia de corte (resistiva)	máx. 6 W/VA
Distancia de accionamiento	mín. 9 mm
Histéresis	máx. 1,5 mm
Precisión de repetibilidad	0,2 mm
Frecuencia de conm. enc./ap.	máx 400 Hz
Tiempo conm. enc.	máx 1,5 ms
Tiempo conm. ap.	máx. 0,5 ms
Encapsulamiento	IP 67 (EN 60529)
Intervalo de temperatura	Entre –25 °C y +75 °C
Indicación	LED, amarillo
Material de la carcasa	PA12
Material del tornillo	Acero inoxidable
Cable	PVC o PUR 3x0,14 mm2
	consulte el código de pedido,
	respectivamente

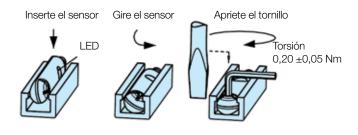

Sensores electrónicos

Sensores de lengüeta

P8S-GCFPX



P8S-GRFLX / P8S-GRFLX2



Dimensiones

Sensores

Instalación del sensor

Datos para pedidos

Salida/función	Cable/conector	Peso kg	Código de pedido
Sensores electrónicos, 10-30 V C	c		
Tipo PNP, normalmente abierto	Cable PUR de 0,27 m y conector macho inmediato de 8 mm	0,007	P8S-GPSHX
Tipo PNP, normalmente abierto	Cable PUR de 0,27 m y conector macho de tornillo M12	0,015	P8S-GPMHX
Tipo PNP, normalmente abierto	Cable de PVC de 3 m sin conector	0,030	P8S-GPFLX
Tipo PNP, normalmente abierto	Cable de PVC de 10 m sin conector	0,110	P8S-GPFTX
Sensores de lengüeta, 10-30 V Ca	A/CC		
Normalmente abierto	Cable PUR de 0,27 m y conector macho inmediato de 8 mm	0,007	P8S-GSSHX
Normalmente abierto	Cable PUR de 0,27 m y conector macho de tornillo M12	0,015	P8S-GSMHX
Normalmente abierto	Cable de PVC de 3 m sin conector	0,030	P8S-GSFLX
Normalmente abierto	Cable de PVC de 10 m sin conector	0,110	P8S-GSFTX
Normalmente cerrado	Cable de PVC de 5 m sin conector (1)	0,050	P8S-GCFPX
Sensores de lengüeta, 10-120 V (CA/CC		
Normalmente abierto	Cable de PVC de 3 m sin conector	0,030	P8S-GRFLX
Sensores de lengüeta, 24-230 V (CA/CC		
Normalmente abierto	Cable de PVC de 3 m sin conector	0,030	P8S-GRFLX2
4) 0:- LED			

¹⁾ Sin LED

Conexión de cables con un conector

Los cables tienen un conector hembra inmediato integral.

Tipo de cable	Cable/conector	Peso	Código de pedido kg	
Cables para sensores, completos con un conector hembra				
Cable, PVC flex	3 m, conector inmediato de 8 mm	0,07	9126344341	
Cable, PVC flex	10 m, conector inmediato de 8 mm	0,21	9126344342	
Cable, poliuretano	3 m, conector inmediato de 8 mm	0,01	9126344345	
Cable, poliuretano	10 m, conector inmediato de 8 mm	0,20	9126344346	
Cable, poliuretano	5 m, conector con tornillo M12	0,07	9126344348	
Cable, poliuretano	10 m, conector con tornillo M12	0,20	9126344349	

Conectores macho para cables de conexión

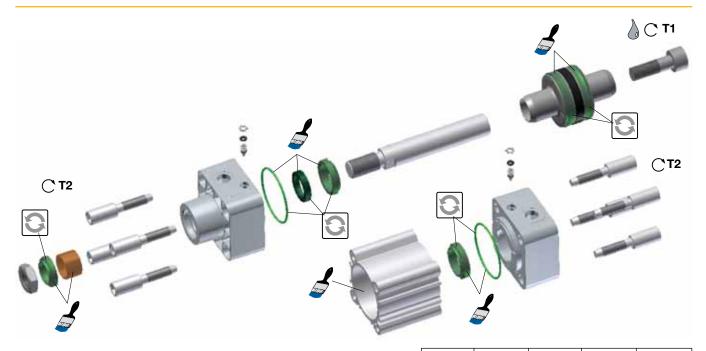
Conectores de cable para producir sus propios cables de conexión. Los conectores se pueden colocar rápidamente en el cable sin necesidad de herramientas especiales. Solo se quita la vaina exterior del cable. Los conectores están disponibles para conectores de tornillo M8 y M12, y cumplen con la protección de clase IP 65.

Conector	Peso kg	Código de pedido
Conector de tornillo M8	0,017	P8CS0803J
Conector de tornillo M12	0,022	P8CS1204J

Kits de sellado de P1D-B

Los kits de sellado completos incluyen: Juntas del pistón Juntas de amortiguación Juntas del vástago del pistón Juntas tóricas Aro rascador

Especificación de los materiales, consulte la página 5


Códigos de pedido

Diámetro del o	cil. Cilindro P1D versión De serie P1D-B	
32	P1D-6KRNB	
40	P1D-6LRNB	
50	P1D-6MRNB	
63	P1D-6NRNB	
80	P1D-6PRNB	
100	P1D-6QRNB	
125	P1D-6RRNB	

Códigos de pedido

Kit de sellado

 Incluido en el kit de sellado

= Cabeza hueca

= Par de apriete

Lubricado con grasa

= Fijador de roscas

Se debe utilizar fijador de roscas Loctite 270 o Loctite 2701.

Diám. cil.	plástico T1	O NV	C T2	O NV
mm	Nm	mm	Nm	mm
32	4,5	6	8	6
40	11	8	8	6
50	20	10	20	8
63	20	10	20	8
80	40	14	20	6
100	120	14	20	6
125	120	14	70	8

Especificación de la calidad del aire (pureza) según ISO 8573-1:2010, la norma internacional para la calidad del aire comprimido

ISO 8573-1 es el documento más utilizado de la serie ISO 8573, ya que se trata del documento que especifica la cantidad de contaminación permitida en cada metro cúbico de aire comprimido.

ISO 8573-1 enumera los principales contaminantes, como partículas sólidas, agua y aceite. Los niveles de pureza correspondientes a cada contaminante se muestran por separado en forma de tabla; no obstante, para que resulte más fácil de usar, este documento combina los tres contaminantes en una tabla sencilla.

			F	artículas sólidas		Agua	Aceite
ISO8573-1:2010 CLASE	Número máximo de partículas por m³			Concentración másica	Punto de rocío a Líquid	Líquida	Concentración total de aceite (líquido, aerosol y vapor)
	0,1-0,5 micras	0,5-1 micra	1-5 micras	mg/m3	presión de vapor		mg/m³
Tal como especifique el usuario o el proveedor del equipo y más estrictos que los de la Clase 1.							
1	≤ 20 000	≤ 400	≤ 10	-	≤ -70 °C	-	0,01
2	≤ 400 000	≤ 6 000	≤ 100	-	≤ -40 °C	-	0,1
3	-	≤ 90 000	≤ 1 000	-	≤ - 20 °C	-	1
4	-	-	≤ 10 000	-	≤ +3 °C	-	5
5	-	-	≤ 100 000	-	≤ +7 °C	-	-
6	-	-	-	≤ 5	≤ +10 °C	-	-
7	-	-	-	5 - 10	-	≤ 0,5	-
8	-	-	-	-	-	0,5 - 5	-
9	-	-	-	-	-	5 - 10	-
X	-	-	-	> 10	-	> 10	> 10

Especificación de la pureza del aire según ISO 8573-1:2010

Al especificar la pureza del aire necesaria, siempre se debe hacer referencia a la norma, seguida de la clase de pureza seleccionada para cada contaminante (se puede seleccionar una clase de pureza diferente para cada contaminante si es necesario).

A continuación se ofrece un ejemplo de cómo especificar una calidad del aire:

ISO 8573-1:2010 Clase 1.2.1

ISO 8573-1:2010 hace referencia al documento de la norma y a su revisión; los tres dígitos se refieren a las clasificaciones de pureza seleccionadas para las partículas sólidas, el agua y el total de aceite. Si se seleccionase una clase de pureza del aire de 1.2.1, se especificaría la siguiente calidad del aire al trabajar en las condiciones de referencia de la norma:

Clase 1 - Partículas

En cada metro cúbico de aire comprimido, el máximo de partículas es de 20.000 de 0,1 - 0,5 micras, 400 partículas de 0,5 - 1 micras y 10 partículas de 1 - 5 micras.

Clase 2 - Agua

Se requiere un punto de rocío a presión (PDP) de -40 $^{\circ}\text{C}$ o superior y no se permite agua líquida.

Clase 1 - Aceite

No se permiten más de 0,01 mg de aceite en cada metro cúbico de aire comprimido. Este es el nivel total para aceite líquido, aerosoles de aceite y vapores de aceite.

ISO8573-1:2010 Clase cero

- La definición de Clase 0 no implica que solo se permita una contaminación de nivel cero.
- La Clase 0 indica que el usuario y el fabricante del equipo deben acordar los niveles de contaminación como parte de una especificación por escrito.
- Los niveles de contaminación acordados para una especificación de Clase 0 deben estar dentro de las posibilidades de medición del equipo de prueba y los métodos de prueba descritos en las Partes 2 a 9 de ISO 8573.
- La especificación de Clase 0 acordada debe constar por escrito en toda la documentación para cumplir la norma.
- Establecer la Clase 0 sin la especificación acordada no tiene sentido y no cumple la norma.
- Varios fabricantes de compresores afirman que el aire suministrado de los compresores sin aceite cumple la Clase 0.
- Si el compresor se probó en condiciones de sala blanca, la contaminación detectada en la salida será mínima. Si el mismo compresor se instala en un entorno urbano típico, el nivel de contaminación dependerá de lo que entra en la admisión del compresor, con lo cual la indicación de Clase 0 dejará de ser válida.
- Un compresor que suministra aire de Clase 0 seguirá necesitando un equipo de purificación, tanto en la sala del compresor como en el punto de servicio, para mantener la pureza de Clase 0 en la aplicación.
- El aire para aplicaciones críticas, como aire respirable, de uso clínico, para el sector alimentario, etcétera, normalmente solo requiere una calidad del aire de Clase 2.2.1 o Clase 2.1.1.
- La purificación del aire para que cumpla la especificación de Clase 0 solo es rentable si se lleva a cabo en el punto de servicio.

Parker en el mundo

Europa, Oriente Medio y África

AE - Emiratos Árabes Unidos, Dubai

Tel: +971 4 8127100 parker.me@parker.com

AT – Austria, Wiener Neustadt Tel: +43 (0)2622 23501-0 parker.austria@parker.com

AT - Europa Oriental, Wiener Neustadt

Tel: +43 (0)2622 23501 900 parker.easteurope@parker.com

AZ - Azerbaiyán, Bakú Tel: +994 50 2233 458 parker.azerbaijan@parker.com

BE/LU – Bélgica, Nivelles Tel: +32 (0)67 280 900 parker.belgium@parker.com

BY - Bielorrusia, Minsk Tel: +375 17 209 9399 parker.belarus@parker.com

CH – Suiza, Etoy Tel: +41 (0)21 821 87 00 parker.switzerland@parker.com

CZ - República Checa, Klecany Tel: +420 284 083 111 parker.czechrepublic@parker.com

DE - Alemania, Kaarst Tel: +49 (0)2131 4016 0 parker.germany@parker.com

DK - Dinamarca, Ballerup Tel: +45 43 56 04 00 parker.denmark@parker.com

ES - España, Madrid Tel: +34 902 330 001 parker.spain@parker.com

FI - Finlandia, Vantaa Tel: +358 (0)20 753 2500 parker.finland@parker.com

FR - Francia, Contamine s/Arve Tel: +33 (0)4 50 25 80 25 parker.france@parker.com

GR - Grecia, Atenas Tel: +30 210 933 6450 parker.greece@parker.com

HU - Hungría, Budaoers Tel: +36 23 885 470 parker.hungary@parker.com IE - Irlanda, Dublín Tel: +353 (0)1 466 6370 parker.ireland@parker.com

IT - Italia, Corsico (MI) Tel: +39 02 45 19 21 parker.italy@parker.com

KZ - Kazajstán, Almaty Tel: +7 7273 561 000 parker.easteurope@parker.com

NL - Países Bajos, Oldenzaal Tel: +31 (0)541 585 000 parker.nl@parker.com

NO - Noruega, Asker Tel: +47 66 75 34 00 parker.norway@parker.com

PL - Polonia, Varsovia Tel: +48 (0)22 573 24 00 parker.poland@parker.com

PT – Portugal, Leca da Palmeira Tel: +351 22 999 7360 parker.portugal@parker.com

RO - Rumania, Bucarest Tel: +40 21 252 1382 parker.romania@parker.com

RU - Rusia, Moscú Tel: +7 495 645-2156 parker.russia@parker.com

SE - Suecia, Spånga Tel: +46 (0)8 59 79 50 00 parker.sweden@parker.com

SK - Eslovaquia, Banská Bystrica Tel: +421 484 162 252 parker.slovakia@parker.com

SL - Eslovenia, Novo Mesto Tel: +386 7 337 6650 parker.slovenia@parker.com

TR – Turquía, Estanbul Tel: +90 216 4997081 parker.turkey@parker.com

UA - Ucrania, Kiev Tel +380 44 494 2731 parker.ukraine@parker.com

UK - Reino Unido, Warwick Tel: +44 (0)1926 317 878 parker.uk@parker.com

ZA – República Sudafricana, Kempton Park Tel: +27 (0)11 961 0700 parker.southafrica@parker.com

América del Norte

CA – Canadá, Milton, Ontario Tel: +1 905 693 3000

US - EE UU, Cleveland Tel: +1 216 896 3000

Asia y el Pacífico

AU – Australia, Castle Hill Tel: +61 (0)2-9634 7777

CN - China, Shanghai Tel: +86 21 2899 5000

HK – Hong Kong Tel: +852 2428 8008

IN - India, Mumbai Tel: +91 22 6513 7081-85

MY - Malasia, Shah Alam Tel: +60 3 7849 0800

JP – Japón, Tokyo Tel: +81 (0)3 6408 3901

KR – Corea, Seúl Tel: +82 2 559 0400

NZ – Nueva Zelanda, el Monte Wellington Tel: +64 9 574 1744

SG - Singapur Tel: +65 6887 6300

TH - Tailandia, Bangkok Tel: +662 186 7000-99

TW - Taiwán, Taipei Tel: +886 2 2298 8987

América del Sur

AR – Argentina, Buenos Aires Tel: +54 3327 44 4129

BR - Brasil, Sao Jose dos Campos Tel: +55 800 727 5374

CL – Chile, Santiago Tel: +56 2 623 1216

MX - México, Apodaca Tel: +52 81 8156 6000

Centro Europeo de Información de Productos Teléfono sin cargo: 00 800 27 27 5374 (desde AT, BE, CH, CZ, DE, DK, EE, ES, FI, FR, IE, IL, IS, IT, LU, MT, NL, NO, PL, PT, RU, SE, SK, UK, ZA)

© 2013 Parker Hannifin Corporation. Reservados todos los derechos.

Catálogo PDE2659TCES Enero de 2013

Parker Hannifin España SA

P.O. Box No. 74 C/ Estaciones, 8 - P.I. Las Monjas 28850 Torrejón de Ardoz (Madrid)

Tel.: +34 902 330 001 Fax: +34 91 675 77 11 parker.spain@parker.com www.parker.com

Su distribuidor autorizado de Parkei